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Time is a central dimension against which perception, action, and cognition play out. From anticipating
when future events will happen to recalling how long ago previous events occurred, humans and animals are
exquisitely sensitive to temporal structure. Empirical evidence seems to suggest that estimating time
prospectively (i.e., in passing) is qualitatively different from estimating time in retrospect (i.e., after the
event is over). Indeed, computational models that attempt to explain both prospective and retrospective
timing assume a fundamental separation of their underlying processes. We, in contrast, propose a new
neurocomputational model of timing, the unified temporal coding (UTC) model that unifies prospective and
retrospective timing through common principles. The UTC model assumes that both stimulus and timing
information are represented inside the same rolling window of input history. As a consequence, the UTC
model explains a wide range of phenomena typically covered by specialized models, such as conformity to
and violations of the scalar property, one-shot learning of intervals, neural responses underlying timing,
timing behavior under normal and distracting conditions, common capacity limits in timing and working
memory, and how timing depends on attention. Strikingly, by assuming that prospective and retrospective
timing rely on the same principles and are implemented in the same neural network, a simple attentional gain
mechanism can resolve the apparently paradoxical effect of cognitive load on prospective and retrospective
timing.

Keywords: timing and time perception, neurocomputational model, prospective timing, retrospective
timing, attention

Time features prominently in most of our everyday activities.
From waiting for a pot to boil to suddenly realizing that a pleasant
conversation ran on for much longer than expected, time is one of
the most fundamental dimensions of our mental lives. But despite
decades of formal theorizing about “the sense of time,” a clear
consensus about underlying cognitive and neural mechanisms is
still lacking. Recent modeling efforts with recurrent neural networks
(RNNs) have generated excellent fits to complex neural data, but
their underlying representational and computational principles are
often difficult to probe. Further, most models of timing have focused
exclusively on prospective timing (e.g., waiting for the pot to boil),

leaving retrospective timing (e.g., recalling the duration of the
conversation) in need of a coherent explanation. The few theoretical
approaches and computational models that have attempted to
explain retrospective timing suggest that prospective and retrospec-
tive timing are related but are essentially distinct processes. In this
article, we propose a new neurocomputational model of timing, the
“unified temporal coding” (UTC) model, with clear underlying
representational and computational principles that propose a unified
account of prospective and retrospective timing.

This introduction is structured as follows. First, we will outline
some basic empirical phenomena related to prospective and
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retrospective time estimation. We will focus on the differences
between both types of timing and discuss theoretical perspectives
related to these differences. Next, we will discuss several classes of
models that have attempted to explain these phenomena and finally
introduce our own model, the UTC model.

Time in Passing and Time in Retrospect

Unlike most modern clocks that keep time in a highly precise and
accurate fashion, time estimation in humans and nonhuman animals
is modulated by a variety of external and internal factors. Most
notably, subjective estimates of time depend on whether time is
estimated as it passes or in retrospect. This insight is far from new,
as James (1890) aptly characterized in The Principles of Psychology:

In general, a time filled with varied and interesting experiences seems
short in passing, but long as we look back. On the other hand, a tract of
time empty of experiences seems long in passing, but in retrospect
short. (p. 320)

James’ distinction between “time in passing” and “time in retrospect”
has become a primary distinction in the time perception literature,
where they are commonly termed “prospective” and “retrospective”
timing (Hicks et al., 1976).
In prospective timing paradigms, subjects are instructed

beforehand to pay attention to the duration of individual stimuli
or the duration of the task and are asked to give a temporal estimate
after the interval has ended. In retrospective paradigms, subjects
are unaware that temporal features are important for the task
beforehand, which is only revealed when they are asked to estimate
the interval after it is already over. For instance, researchers have
employed list memory paradigms to study differences between
prospective and retrospective timing (e.g., Poynter, 1983). Subjects
are presented with a list of items that they have to remember. In
the prospective condition, subjects are given the additional task to
track the duration of the memory encoding phase whereas the
retrospective group is kept oblivious about this additional task. After
the items have been presented, both groups of subjects report the
duration of the encoding phase. In the prospective condition,
subjects can form an estimate of elapsed time as the interval unfolds
while subjects in the retrospective condition have to construct
an estimate in hindsight. A common finding is that retrospective
estimates are both less accurate (lower) and less precise (more
variable) than prospective estimates (Block & Zakay, 1997).
A major theoretical issue in the literature is whether prospective

and retrospective timing are different in degree or different in kind.
Brown (1985) has argued that the same processes underlie timing
performance in prospective and retrospective conditions (i.e.,
similar or identical “in kind”) but that they differ in the degree of
attention paid to temporal or stimulus information, respectively.
According to this view, time estimates are constructed from
encoding temporal cues, such as salient changes (e.g., Poynter &
Homa, 1983) or event structure (e.g., Brown & Boltz, 2002). In a
prospective condition, the task instructions ensure that sufficient
attention is focused on the timing task to ensure reasonable levels of
accuracy. In retrospective conditions, all attention will be directed
toward the main (or a distracting) task, resulting in less frequent and
less consistent encoding of temporal cues, resulting in shorter and
more variable time estimates. As dual-task conditions can have
similar effects on prospective and retrospective timing (e.g., Brown

& Stubbs, 1992), this is seen as support for the view that prospective
and retrospective timing only differ in degree of temporal
processing.

In contrast, Block et al. (2010) argued that prospective and
retrospective timing rely on categorically different kinds of
processes. In their view, not dissimilar to the view proposed above,
prospective timing is based on an internal clock mechanism that
needs attention to function properly. Zakay and Block (1995)
proposed an attentional gate that controls how fast “ticks” pass to an
accumulator. When attention is directed to time, the gate opens,
allowing more ticks to pass and leading to longer time estimates.
When attention is diverted away from time, the attentional gate
narrows, allowing fewer ticks to pass, explaining why prospective
time estimates are lower in attention-demanding dual-task condi-
tions. Conversely, Block et al. (2010) proposed that retrospective
estimates are based on the reconstruction of past events through
memory retrieval. Time judgements are constructed by estimating
how many contextual changes have happened during the event:
More contextual changes lead to longer time estimates (Block &
Reed, 1978). When the primary task is more demanding (i.e., higher
cognitive load), more attention is focused on incoming stimuli,
increasing the number of contextual changes that are encoded and
remembered, increasing time estimates. Supporting this dual view
of timing, a seminal meta-analysis on the effect of cognitive load on
prospective and retrospective timing has shown that prospective
estimates decrease under higher cognitive load whereas retrospec-
tive estimates increase under higher cognitive load (Block et
al., 2010).

This interaction effect is an important explanatory target for
any formal model attempting to jointly explain prospective and
retrospective timing. As we will see later, the computational models
that have explained the effects of cognitive load on timing typically
side with the categorical view advanced by Block et al. (2010) by
proposing that cognitive load affects separate processes. We will
propose a theoretical alternative that demonstrates that cognitive
load could affect a single process (i.e., attention to time) while still
capturing the differential effects on prospective and retrospective
time estimation.

Timing Phenomena

To demonstrate how our model unifies prospective and
retrospective timing, we will consider some target phenomena.
First, we introduce behavioral and neural phenomena that have
proven robust features of interval timing performance and which
have also been successfully modeled by other theoretical frame-
works. Then, we discuss some phenomena that directly specify in
which situations prospective timing is affected, either by interrup-
tions, cognitive/memory load, or inattention. Finally, we will
discuss the effect of perceived changes on retrospective timing.
When compounding these phenomena, we will demonstrate how
prospective and retrospective timing may originate from the
common principles.

Timing Variability Increases Over Time

Time estimation is remarkably precise. Humans can reliably
recognize and reproduce intervals with little variability. Interestingly,
however, this variability increases with the target interval, such that
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the longer the interval to be estimated, the larger the variability of
those estimates. In fact, many studies have reported that the standard
deviation of time estimates scales linearly with time (Lejeune &
Wearden, 2006; J. H.Wearden & Lejeune, 2008), which is called the
scalar property (Gibbon, 1977).1 Despite its central role in the timing
literature, some deviations have also been observed. For instance,
standard deviation has both been shown to increase slower than
linear (e.g., Lewis &Miall, 2009) and faster than linear (e.g., Bizo et
al., 2006), although it is not clear under which circumstances these
distinct violations of the scalar property occur. As such, a major
challenge is not just to account for the scalar property but also to
explain why that property may not always hold.

Timing Behavior Can Be Learned Rapidly

The timing of behavior needs to be flexible.When an interval lasts
longer than expected, we need to learn to be more patient in the
future so as to prevent premature responses. Conversely, when an
interval ends before we expect it, we need to react more quickly the
next time around to not miss out on a window of opportunity.
Evidence from humans and nonhuman animals suggests that this
learning can happen impressively quickly, in as little as one or two
exposures to a new target interval (Komura et al., 2001; Mello et al.,
2015; Simen et al., 2011a). For instance, when humans need to
respond as close to the end of an interval (but not after it has ended),
they can learn to respond sooner (or later) when the target interval
decreases (or increases). This learning happens in as little as one
or two exposures to the new interval (Simen et al., 2011a). Few-shot
temporal learning clearly contrasts with slower forms of learning
(Bueti & Buonomano, 2014), and as such, it represents an important
benchmark for models of timing.

Complex Neural Patterns Exhibit Temporal Scaling

Traditionally, it has been hypothesized that the neural mechan-
isms underlying timing resemble a simple accumulation process.
Even though this view has been questioned on empirical and
theoretical grounds (see e.g., Kononowicz & Penney, 2016;
Kononowicz et al., 2018; van Rijn et al., 2011), it is still a
prominent view in the literature (Salet et al., 2022). However, recent
studies have uncovered that the neural mechanisms underlying
timing might be fairly diverse. Researchers have not just found
neurons that steadily increase their firing during an interval (ramping
cells; Emmons et al., 2017), but they also found neurons that
decrease their firing (decaying cells; Mita et al., 2009) or fire only at
specific moments in time (time cells; MacDonald et al., 2011). These
findings are difficult to align with theories that propose only a single
neural mechanism underlying timing performance. Interestingly,
this same set of diverse neurons also exhibits temporal scaling: Their
firing patterns compress when short intervals are timed and stretch
when long intervals are timed (e.g., Emmons et al., 2017; Henke et
al., 2021; Shimbo et al., 2021; Wang et al., 2018, 2020; Zhou et al.,
2020). In other words, the speed at which their firing pattern unfolds
adapts to the target interval. Furthermore, the degree of temporal
scaling predicts trial-to-trial fluctuations in time estimation (Wang
et al., 2018), suggesting that temporal scaling has an important
functional role in timing. Despite the established role of complex
neural patterns and temporal scaling in timing behavior, their
underlying principles and interconnections are not clear yet.

Interruptions Induce Delays in Timed Responses

In realistic contexts, timing may be interrupted, for instance when
receiving a call while waiting for the last 30 s before draining the
pasta. These kinds of interruptions are often studied with gap and
distractor paradigms (Roberts & Church, 1978). Here, subjects are
trained to respond after a “timing” signal (e.g., a tone) has been
presented for a certain amount of time. On some trials, a gap in the
timing signal or a salient distractor is presented. Subjects sometimes
either ignore the interruption, pause the timing process until the end
of the interruption, largely forget how much time has passed before
the interruption, or show behavior that is somewhere in between
those possibilities (C. V. Buhusi & Meck, 2009a). The amount of
“pausing” or “forgetting” depends on several factors, such as the
timing of the interruption (Cabeza de Vaca et al., 1994), the
dissimilarity between the distractor and the timing signal (C. V.
Buhusi, 2012), the length of the target interval (C. V. Buhusi &
Meck, 2009b), and the novelty of the distractor (C. V. Buhusi &
Matthews, 2014). Overall, these findings suggest that memories of
how much time has passed may be forgotten when timing is
interrupted. Nevertheless, it is not yet clear how or why this kind
of forgetting happens in the first place.

Working Memory Load Decreases Prospective
Time Estimates

The effect of interruptions on timed responses already suggests
that timing somehow has limited capacity. More specifically, it
seems that timing limitations are related to capacity limitations in
working memory (Fortin & Schweickert, 2016). For instance, when
performing an N-back task, increasing the number of items that
need to be concurrently remembered (i.e., working memory load)
does not only affect working memory performance but also
decreases prospective time estimates (Polti et al., 2018). This kind of
interference is specific to working memory: Processing in working
memory interferes with timing whereas visual search, task
switching, and long-term memory activation do not (for a review,
see Fortin & Schweickert, 2016). A popular interpretation of this
effect is that working memory and timing share a common, limited
resource (C. V. Buhusi & Meck, 2009a). While this theoretical
position is often voiced in the literature, it is not clear how such a
limited resource is implemented neurally.

Attending to Time Increases Prospective Time Estimates

Time seems to drag on in boring situations, such as watching a pot
boil (Block et al., 1980; Cahoon & Edmonds, 1980). One common
explanation posits that in boring situations we “attend to time,”
which in turn increases prospective time estimates. This prompts the
feeling that we have been waiting for longer than is actually the case.
The effects of attention on time perception have also been confirmed
in more controlled settings. For instance, when more attention is
paid to the timing task in dual-task paradigms, subjective estimates
of the interval are longer (Casini & Macar, 1997; Franssen &
Vandierendonck, 2002; Macar et al., 1994). Interestingly, for
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1 The scalar property also pertains to the scaling of the distributions of time
estimates. However, in its simplest form, the linear relationship between
mean and standard deviation simplifies to Weber’s Law for time perception.
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durations up to a minute, self-reported attention to time increased
time estimates over and above differences between prospective
and retrospective timing instructions (Martinelli & Droit-Volet,
2022). This effect of divided “attention to time” suggests that
keeping track of time demands attention. A related way in which
attention increases time estimates is selective attention, for instance,
when subjects pay attention to a certain region in space. Stimuli in
the attended region are perceived to last longer than unattended
stimuli (e.g., Enns et al., 1999; Mattes & Ulrich, 1998; Seifried &
Ulrich, 2011; Yeshurun & Marom, 2008). In sum, the effect of
attention on time estimation is twofold: Divided attention to the
timing task increases prospective estimates and selective attention
to stimuli increases their perceived duration. The concept of
“attention” features prominently in theories of time perception.
However, a major challenge for these theories is to implement
attention in a neurally plausible way.

Divided Attention to Time Interferes With
Secondary Tasks

Divided attention to the timing task and selective attention to
timed stimuli both increase prospective time estimates. However,
an important reason to dissociate between their effects on time
estimation is that they have opposing effects on stimulus processing.
Selective attention both increases prospective time estimates (e.g.,
Enns et al., 1999; Mattes & Ulrich, 1998; Yeshurun & Marom,
2008) and enhances task performance for attended stimuli. Directing
divided attention to the timing task, however, impairs secondary
task performance (for a review, see Brown, 2006). For instance,
when subjects are asked to give priority to the timing task,
performance on luminance detection tasks (Casini & Macar, 1997;
Macar et al., 1994), visual working memory tasks (Franssen &
Vandierendonck, 2002), and Stroop interference tasks (Zakay,
1998) deteriorate. It has been suggested that keeping track of time
requires executive processes (Brown, 2006), specifically those
important for memory updating (Ogden et al., 2011). In a classic
fMRI study, participants were instructed to divide their attention
between a timing task and a color working memory task. When
participants attended more to the timing task, not only did their
performance on the color working memory task deteriorate but
neural responses in brain areas responsible for color perception
(V4) were also attenuated (Coull et al., 2004). In contrast, neural
responses to selectively attended stimuli are typically enhanced
(Treue, 2001). In sum, if attention is invoked to explain variations
in time estimation, divided and selective attention need to be
dissociated carefully.

Perceived Changes Increase Retrospective Estimates

As already suggested by William James, an interval with varied
and interesting experiences seems long as we look back. Indeed,
when more stimuli are perceived, retrospective time estimates are
longer (Block & Reed, 1978; Fountas et al., 2022; Lositsky et al.,
2016; Mcclain, 1983; Predebon, 1996). Crucially, the number of
perceived stimuli is a reliable predictor of retrospective estimates
but not the number of remembered stimuli (e.g., Block, 1974). The
number of perceived stimuli in an interval also lengthens
prospective estimates in some situations (Bangert et al., 2019;

Faber & Gennari, 2017; Herbst et al., 2012; Kladopoulos et al.,
2004; Poynter & Homa, 1983; Roseboom et al., 2019; Waldum &
Sahakyan, 2013) but in other situations shortens prospective
estimates (Bangert et al., 2020; Liverence & Scholl, 2012; Mcclain,
1983; Poynter & Homa, 1983; Predebon, 1996). While the effect of
the number of stimuli seems consistent across prospective and
retrospective paradigms (Block & Zakay, 1997), their effects can be
dissociated experimentally. For instance, when stimuli are actively
processed, increasing the number of stimuli decreases prospective
estimates whereas passively viewed stimuli do not have a consistent
effect. At the same time, retrospective estimates increase with the
number of stimuli regardless of whether these stimuli are processed
actively or passively (Mcclain, 1983; Predebon, 1996). A recent
study by Bangert et al. (2020) demonstrated that task requirements
determine whether event boundaries lengthen or shorten prospective
duration estimates. When a naturalistic event boundary happened
during a to-be-estimated interval, it shortened prospective estimates.
However, temporal proximity between tones was judged as more
distant when an event boundary intervened.

Another effect related to perceived changes clearly dissociates
prospective and retrospective timing. When a series of items is
explicitly segmented, effectively processing more changes in
perceptual input, retrospective time estimates increase (Poynter,
1983) whereas prospective estimates are unaffected (Zakay et al.,
1994; for a meta-analysis, see Block et al., 2010). In a typical version
of this paradigm, participants encode a series of memory items and
are instructed to remember some “high-priority” items at all costs.
When these high-priority items are uniformly distributed over the
interval (effectively segmenting the input), retrospective estimates
are significantly longer than when high-priority items are clustered
around the start or end of the interval. Interestingly, segmentation
does not affect the estimated number of events, suggesting that
segmentation is partly dissociable from the effect of the number of
perceived changes (Poynter, 1983). Overall these findings suggest
that actively processed changes, and in particular events that
segment a stream of input, selectively shape retrospective but not
prospective time estimates.

Cognitive Load Affects Prospective and Retrospective
Estimates Differently

As referred to earlier, the seminal meta-analysis by Block et al.
(2010) on time estimation has found that cognitive load decreases
prospective estimates while it increases retrospective estimates.
The effect of cognitive load on prospective and retrospective
estimates neatly combines the effects we discussed above. As
more attention is paid to the difficult secondary task, less attention
is paid to the timing task, decreasing prospective time estimates.
Conversely, as the primary task becomes more difficult, more
changes are stored in memory, increasing retrospective time
estimates. In sum, the differential effects of cognitive load on
prospective and retrospective time estimation may provide us with
information on how they differ. As we will see in the next section,
current state-of-the-art models that attempt to explain this
interaction suggest that cognitive load affects different processes
for prospective and retrospective time estimation—attention and
memory, respectively.
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Models of Timing

Despite the central role of timing in everyday activity, its
underlying cognitive and neural processes remain an active matter of
debate (for a comprehensive review, see Paton & Buonomano,
2018). Awide variety of models have been proposed that show basic
timing capabilities, suggesting that many possible mechanisms
could keep track of time. Here, we will introduce several classes of
timing models and discuss how they explain the timing phenomena
introduced earlier. We will then zoom in on two models that explain
the paradoxical effect of cognitive load on prospective and
retrospective time estimation.

Pacemaker–Accumulator Models

The earliest formal models of interval timing were pacemaker–
accumulator (PA) models (Creelman, 1962; Treisman, 1963; for an
extensive review of PA models, see Simen et al., 2013; van Rijn,
2014). These models view timing as the accumulation of ticks that
are emitted by a pacemaker. The number of accumulated ticks
represents how much time has elapsed since the onset of a single
timed event but also the expectancy of future rewards that follow
these events after a predictable interval (Gibbon et al., 1984; Killeen
& Fetterman, 1988; Simen et al., 2011a).
There are several ways in which PA models explain the scalar

property, mainly varying in assumptions they make about noise in
the pacemaker (e.g., Simen et al., 2013), the memory system that
stores temporal information (Gibbon et al., 1984) or in the rate of the
pacemaker (Treisman, 1963; Ulrich et al., 2022). Several versions of
PA models have also been proposed that successfully account for
violations of the scalar property (e.g., Bizo et al., 2006; V. M. K.
Namboodiri et al., 2016). PA models propose that a steady
accumulation of ticks underlies time estimation, which makes it
difficult to account for complex neural patterns. However, some PA
models (for an overview, see Simen et al., 2013; also see, Almeida &
Ledberg, 2010) propose that shorter or longer intervals are learned
by speeding up or slowing down accumulation, which explains the
temporal scaling of ramping neurons (Komura et al., 2001). The
effect of interruptions on time estimates can be successfully
explained by assuming that time estimation shares some attention
and memory resources. During the interrupting event, accumulation
(partly) stops, and accumulated ticks are gradually forgotten,
explaining most of these “interruption” effects fairly parsimoniously
(C. V. Buhusi & Meck, 2009a). Similarly, this same set of
assumptions can explain the effect of working memory load on time
estimates: When working memory resources are taken away from
the timing task, prospective time estimates decrease (Fortin &
Schweickert, 2016). Conversely, when attention is directed to the
timing task, more ticks can be accumulated, increasing prospective
estimates (Zakay & Block, 1995). A similar explanation also holds
for the effect of attention on time estimates: More ticks are
accumulated for attended stimuli. Alternatively, attention to time
entails that the current “tick count” is monitored more consistently.
Conversely, when attention is taken away, the count is inspected too
late, delaying timed responses (Taatgen et al., 2007; van der Mijn &
van Rijn, 2021).2 While the effect of attention to time on secondary
task performance is not often considered, it is compatible with
time estimation sharing a common resource with other cognitive
processes that underlie secondary task performance (C. V. Buhusi &

Meck, 2009a). Last, PA models are not ideally suited to explain
retrospective time estimation. If we assume a single internal
clock, the model would need a clear cue when to start and stop
accumulating, which is not available in retrospective scenarios. In
principle, PA models could account for retrospective timing if each
event started its own internal clock from which elapsed time would
be read out. However, it is not clear whether this solution scales
well, given the number of events that would need to be timed (and
therefore clocks that need to run in parallel) and, if it does, whether it
would account for empirical patterns in retrospective timing.

Memory Models

Memory models of timing are a more recent development in the
literature and were a clear reaction to the more dominant PA models
(Staddon & Higa, 1999). Instead of proposing an accumulation
process, memory models have generally implemented timing as
keeping track of the activity of memory traces (French et al., 2014;
Grossberg & Schmajuk, 1989; Killeen & Grondin, 2022; Shankar &
Howard, 2010, 2012; Staddon &Higa, 1999). These models assume
that events create memory traces that decay over time. Elapsed time
since an event can be estimated from how much activity is left in
memory traces associated with that event, similar to how radioactive
decay can be used to date fossils.

Memory models have been successful at explaining both
adherence to the scalar property (French et al., 2014; Shankar &
Howard, 2010, 2012) and to violations of the scalar property
(Killeen & Grondin, 2022; Staddon & Higa, 1999). While all
memory models specifically propose neural decay as central to
timing performance, the timing from inverse laplace transform
(TILT) model (Shankar & Howard, 2010) has also successfully
predicted the distribution of neural decay rates in the entorihinal
cortex (Bright et al., 2020) and time cell activity (MacDonald et al.,
2011; Pastalkova et al., 2008) and proposed how these time cells
might exhibit temporal scaling (Y. Liu et al., 2019) as observed in
Shimbo et al. (2021). The effect of interruptions on timing can be
captured by memory models quite naturally since recent timing
input is gradually forgotten during the interruption (Hopson, 1999).
The effect of working memory load has been successfully modeled
by the fading-Gaussian activation model of interval timing
(GAMIT; French et al., 2014), which assumes that time estimation
competes for attention with concurrent tasks in working memory.
GAMIT can also explain the effect of “attending to time” in dual-
task situations; however, it is not clear whether GAMIT also predicts
that time estimation degrades secondary task performance (see the
GAMIT section). GAMIT does not explicitly address the effect of
the number of perceived stimuli on retrospective time estimates.
Conversely, the predictive processing model (Fountas et al., 2022)
has shown that the number of perceived events can explain
retrospective estimates for eventful scenes (see section the
Predictive Processing Model). As we will see later, both GAMIT
and the predictive processing model can explain the differential
effects of cognitive load on prospective and retrospective time
estimation by assuming that they affect attention and memory
processes, respectively.
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2 This cannot be the whole story, however. Dual tasking has a large effect
on timed motor responses, such as production and reproduction, but also
reliable effects on verbal estimates (see Block et al., 2010).
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Recurrent Neural Network Models

In recent years, RNN models have gained prominence in the
timing literature (e.g., Buonomano, 2000; Buonomano & Mauk,
1994; Egger et al., 2020; Gavornik et al., 2009; Goudar &
Buonomano, 2018; Hardy & Buonomano, 2018; Hardy et al., 2018;
Laje & Buonomano, 2013; Pérez & Merchant, 2018; Remington et
al., 2018; Shea-Brown et al., 2006; Sohn et al., 2019; Wang et al.,
2018; Yamazaki & Tanaka, 2005). While the previously discussed
model categories referred to specific mechanisms underlying timing
behavior (i.e., accumulation, decay, oscillation), RNN models only
constrain the wiring diagram of the neural network to have recurrent
connections. As such, several models that were previously discussed
are technically RNNs. For instance, the time-adaptive opponent
poisson drift diffusion model by Simen et al. (2011a) formalizes the
implementation of their model as a neural network with specific
recurrent connections, which allows the model to implement a
“neural clock.” Here, we will mainly talk about RNN models that
randomly initialize their recurrent weights (which can be further
refined through learning mechanisms). When these RNNs are given
inputs, complex neural firing patterns ensue from which elapsed
time can be read out. Consequently, RNN models demonstrate that
any stable, nonrepeating trajectory through high-dimensional neural
state space can tell time. Indeed, this view suggests that most (if not
all) neural circuits have the intrinsic ability to tell time as opposed to
models that assume dedicated timing circuits (Ivry & Schlerf, 2008).
Several RNN models have systematically explored how different

sources of neural noise may explain the scalar property and
deviations of the scalar property (e.g., Laje & Buonomano, 2013;
Pérez & Merchant, 2018). In contrast to PA models and memory
models, RNNs exhibit many dynamic neural patterns: ramping,
decaying, oscillating, and more complex patterns (see, e.g., Wang et
al., 2018). A variety of RNN models have been developed that
exhibit temporal scaling of these complex responses as well (Goudar
& Buonomano, 2018; Murray & Escola, 2017; Sohn et al., 2019;
Wang et al., 2018). RNN models have not aimed at explaining the
effect of interruptions on timing. Interestingly, some researchers
have shown that RNNs that were trained to robustly estimate time
were insensitive to interruptions (Laje & Buonomano, 2013), which
suggests that forgetting may not naturally emerge in these trained
RNNs.While the complex dynamics of RNNmodels resemble those
that are found during working memory tasks (Bi & Zhou, 2020;
Cueva et al., 2020), a systematic explanation of working memory
load effects on time estimation has not been explored. Similarly,
RNN models have not incorporated attentional mechanisms, so the
effects of selective and divided attention on time estimation are
currently not explained. Further, RNN models are typically applied
to prospective timing only, leaving open the question of how they
explain differences between prospective and retrospective timing.
The flexibility of RNNs allows them to explain a variety of

psychological and neural phenomena, but this flexibility may
come at the cost of interpretability. Where previous models had a
relatively straightforward interpretation of how individual states
represent time (e.g., time since onset, history of events), the
temporal representations used by RNNs are more elusive. RNNs are
trained to perform a host of different timing tasks, after which their
behavior can be studied by analyzing the dynamics of the network as
it performs those tasks (Beiran et al., 2023; Bi & Zhou, 2020; Sohn
et al., 2019). However, there are little to no guarantees that the

network solves different timing tasks using the same basic
mechanisms. In this sense, RNN models generally lack strong
theoretical commitments to common representational and computa-
tional principles underlying temporal processing. In principle, RNN
activity could provide the rawmaterials for decoding a more abstract
representation of time (van Wassenhove, 2009), which could
conform to common representational principles. However, that still
leaves open the question of whether the raw materials that RNNs
generate operate according to common principles, or whether they
are merely an accidental by-product of its wiring diagram. In sum,
while RNN models have generated powerful explanations for a host
of neural data, their flexibility complicates a systematic account of
the representational and computational principles underlying
prospective and retrospective timing. We will now zoom in on
two models that have attempted such a unification.

GAMIT

In the Memory Models section, we already mentioned the
GAMIT (French et al., 2014). Since it is one of the few formal
models that explain both prospective and retrospective timing, we
will explain it in more detail here. GAMIT assumes that prospective
and retrospective estimates are made based on decaying neural
activity. The model learns a mapping between memory trace activity
and objective time: The lower the activation, the more time has
passed. GAMIT further assumes that cognitive load affects the rate
of decay: When cognitive load is higher than usual, activation
decays more quickly, presumably because of interference from
distracting concurrent tasks (timing tasks themselves have a special
status and do not affect the rate of decay). When time estimates are
made under high levels of cognitive load, activity traces will have
decayed more than under typical levels of cognitive load, explaining
why retrospective estimates are longer under high cognitive load.
The model further proposes that, only in prospective conditions,
activity traces are sampled by a separate attentional mechanism.
This attentional sampling mechanism produces an estimate of
how quickly the activity trace decays: If the difference between
consecutive activity samples is large, the rate of decay is estimated
to be high. As a result, the model estimates that the passage of time is
relatively fast. GAMIT assumes that this “passage of time” estimate
adjusts activity-based estimates. For instance, if the estimated rate of
decay is faster than typical, activity-based estimates will be adjusted
to be shorter since time seems to be passing more quickly.3

Crucially, when attention is diverted away from timing, fewer
samples are collected, leading to larger differences between
consecutive samples and, therefore, fast passage of time estimates.
Activity-based estimates are adjusted to be shorter, explaining why
prospective estimates decrease with high cognitive load.

We believe that the hypothesized role of attention in GAMITmay
preclude a comprehensive explanation of some important effects.
First, GAMIT models divided attention to the timing task, but
attentional sampling of thememory trace does not affect the memory
trace. Therefore, it is not clear how more attention to time (i.e., more
sampling) might cause interference with secondary task
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3 The assumed connection between prospective time estimates and
passage of time estimates, however, is more complicated: Passage of time
judgements are often not systematically related to prospective time estimates
(J. Wearden, 2015).

786 DE JONG ET AL.



performance (see the Divided Attention to Time Interferes With
Secondary Tasks section), in particular, tasks in which such a
memory trace might be central to performance, such as working
memory tasks (e.g., Franssen & Vandierendonck, 2002). Also,
while attentional sampling does not influence neural activity in
GAMIT, attention to time does seem to attenuate neural responses
related to secondary task performance (Coull et al., 2004). While
GAMIT does not explicitly model the effects of selective attention to
stimuli on time perception, it seems that the magnitude of neural
responses would not play a role in such an explanation since
attention is not assumed to influence the activity trace. In contrast, a
large body of evidence suggests that larger neural responses
engender longer perceived stimuli (Matthews & Meck, 2016), and
selective attention to stimuli amplifies neural responses (Treue,
2001). In sum, GAMIT’s assumption that attention does not
influence neural activity is inconsistent with several timing
phenomena that are related to attention.

Predictive Processing Model

The most recent model attempting to explain the effect of
cognitive load on prospective and retrospective time estimation is
the predictive processing model by Fountas et al. (2022). The core
principle of the predictive processing model is that time estimates
are based on counting the number of surprising events encoded in a
sensory processing network. This model captures idiosyncratic
biases in prospective timing, where more eventful scenes were
judged to last longer than uneventful scenes (Fountas et al., 2022;
see also Roseboom et al., 2019; Sherman et al., 2022). The
predictive processing model assumes that sensory inputs are
processed by a hierarchical Bayesian network. The network
continually updates an internal model of the world by generating
model-based predictions and comparing these predictions to
incoming information. When predictions are violated, the network
generates a prediction error. Crucially, when the magnitude of the
prediction error crosses a decaying threshold, it is “surprising”
enough, and the network encodes the relevant information as an
event in episodic memory after which the decaying threshold is
reset. Time estimates are generated by reading out the number of
surprises in the hierarchical network. When less attention is paid to
time in high-load prospective conditions, the dynamic threshold
decays slower, resulting in fewer surprising events being encoded in
episodic memory and shorter time estimates. In contrast, effects of
cognitive load in retrospective conditions are explained by memory
retrieval processes, specifically how much effort is put in retrieving
events from episodic memory after the interval has ended.4 The
model assumes that in high-load conditions, more effort is put into
retrieving events after the interval is over, leading to more retrieved
events and, therefore, longer time estimates.
The predictive processing model assumes that as more attention

is paid to time, the attention threshold decays faster, leading to
more surprising events and longer time estimates. However, by
equating time estimates with the number of surprising events, the
model may be unable to account for some effects of attention on
time estimation. First, while its attentional mechanism can
amplify sensory signals, it fails to capture how divided attention
to time interferes with secondary task performance. For instance,
when attention is directed at time, more events are encoded in
episodic memory, but the model does not clarify how more

remembered events could lead to worse task performance in
secondary tasks, especially working memory tasks (e.g., Franssen
& Vandierendonck, 2002; Macar et al., 1994) or luminance
detection tasks (Casini & Macar, 1997; Macar et al., 1994).
Second, surprising events do not always lead to longer temporal
percepts. Several studies have shown that stimuli shown at cued
locations are perceived as longer, even though stimuli at cued
locations were more probable and therefore less surprising than
stimuli at uncued locations (Enns et al., 1999; Mattes & Ulrich,
1998; Yeshurun &Marom, 2008). Further, as mentioned earlier, the
number of stimuli increases prospective estimates but mainly when
stimuli are not actively processed. Instead, when stimuli are actively
processed, more stimuli decrease prospective estimates (Mcclain,
1983; Predebon, 1996). It is also not clear how the predictive
processing model would account for the effect of interruptions (see
the Interruptions Induce Delays in Timed Responses section). When
a salient distractor (i.e., a “change” in the timed signal) is introduced
in timing tasks, timed responses are delayed in proportion to the
dissimilarity to the timed signal (for a review, see C. V. Buhusi &
Meck, 2009a). In contrast, the predictive processing model would
predict that more salient changes would lead to faster timed
responses given that more subjective time is accumulated.
Additionally, when the distractor is not familiarized (i.e., more
surprising), timed responses are delayed even more (C. V. Buhusi &
Matthews, 2014). In sum, by equating “surprising events” to
subjective time, the predictive processing model overlooks
phenomena in which surprises compress subjective time (for a
similar critique of this type of explanation, see Phillips, 2012).

The UTC Model

In this article, we develop a neurocomputational model of
prospective and retrospective timing: the UTC model. The UTC
model puts forward unifying representational and computational
principles underlying prospective and retrospective timing. Here,
we will provide a conceptual sketch of those principles and how
they can account for the timing phenomena we introduced earlier
(Figure 1).

At the core of the UTC model is the Legendre Delay Network
(LDN; Voelker & Eliasmith, 2018), which is structured to optimally
approximate a rolling window of its input history. This neural
network maintains and continuously updates a representation of the
recent past. To illustrate how this works, consider a sequence of
inputs (Figure 2). Our network represents, at any point in time, not
only the current input but also its history up to a certain point in the
past: It represents a rolling window of input history. Incoming inputs
are encoded into the front of the window, and past inputs are
gradually pushed to the end of the window until they eventually fall
outside of it.

It should be stressed that the UTC model does not just process a
sequence of stimuli with a certain time constant (i.e., the one set by
the window). In addition to going through a sequence of stimulus
representations, it also represents a sequence of stimuli. That is, at
any point in time, the network does not only represent the current
input (or a few hundred milliseconds ago, accounting for physical
and physiological delays); it represents on a continuous timeline
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4 But it is unclear why cognitive load would not affect the encoding of
episodes into memory.
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what happened when. This timeline spans the interval between the
current time point (“now”) to some point in the past, defined by the
window’s size. Crucially, stimulus information within the window
is not simply an echo of its initial presentation, and its temporal
location inside the window does not depend on its “strength.”
Instead, information continually slides across the window, and as
such, temporal information is actively constructed instead of
passively receding into the past.
As wewill see later, the way that our network actively represents a

rolling window explains the variety of complex neural firing
patterns underlying timing performance. Further, when the network
only needs to remember events that happened very recently, it can
shrink the size of the temporal window on the fly. This ensures that
more recent events are represented with higher fidelity (i.e., smaller
error) but at the cost of more distant events that fall outside of the
smaller window. Our network accomplishes this by speeding up the
dynamics, which explains why complex neural patterns may exhibit
temporal scaling (see the Changes in Window Size Explain
Temporal Scaling in Complex Neural Patterns section).

The UTC model also details how the length of the rolling window
can be learned rapidly. An on-shot learning rule (adapted from time-
adaptive drift-diffusion models [TDDMs]; Rivest & Bengio, 2011;
Simen et al., 2011a) details how the window needs to be lengthened
when the target interval is longer than the window and shortened when
the target interval is shorter than the window. In effect, the UTCmodel
can learn tomatch the window size to the target interval. These learning
mechanisms ensure that all relevant stimulus information during the
interval can fit inside the window. Whenever the window shrinks, this
ensures that the information still inside the window is represented at
higher fidelity. Aswewill show later, this learningmechanismmatches
empirical learning rates from behavioral data and is consistent with
rapid adaptation of neural ramping speed (Komura et al., 2001).

The UTC model assumes that retrospective time estimates are
made by summing the overall fidelity of the remembered inputs that
are represented inside the temporal window. When more inputs are
summed, retrospective time estimates become longer. Similarly,
when those same inputs have higher fidelity, retrospective time
estimates also increase. This mechanism provides an explanation of
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Figure 1
Retrospective and Prospective Time Estimation in the Unified Temporal Coding (UTC) Model

Note. Left panel: The UTC network receives a series of stimuli and remembers both their content and their temporal position inside a
temporal window. Incoming stimuli are encoded at the right of the temporal window. Recent stimuli are continually pushed to the left
until they fall outside of the window and are forgotten by the network. The network can control the size of the temporal window based
on task demands. Longer windows ensure that longer temporal patterns can be tracked but at the cost of lower fidelity. Short windows
can only track temporal patterns over a brief timescale, but the fidelity of the content is higher. Time estimates are made by adding up
how much content the network remembers in the temporal window and mapping that to a unit of time. Right panel: When the UTC
model prospectively estimates an interval, it receives an additional constant timing input (see clock in the figure). This timing input is
represented in the same way as the stimulus inputs. The UTC model estimates time by adding up how much of this timing input it
remembers. See the online article for the color version of this figure.
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why more perceived stimuli increase retrospective time estimates
(see the Integrating Remembered Content Explains Effects of
Contextual Changes section).
Prospective estimates of stimulus duration are made in the same

way as retrospective estimates. Since the network continuously

updates input history, the longer a stimulus is presented, the longer
the representation of that stimulus in the rolling window. Then, if the
network integrates this representation within the rolling window, it
gives an accurate estimate of stimulus duration. However, when the
stimulus input is interrupted in some way, the representation of

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 2
Legendre Delay Network Demonstration

Note. The input u (top row) is fed to the system, which continually updates the state vector x containing coefficients (second
row) on the temporal basis functions (the Legendre polynomials; third row). At any point in time, the network has an
instantaneous representation of the last θ seconds (here, 2 s) of its input history. For instance, when we take the coefficients in x at
3 s (dots in the second row), multiply them with the Legendre polynomials p and take their sum, we end up with a fair
representation of the input history between 0 (now) and θ seconds ago. See the online article for the color version of this figure.
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stimulus history contains a “gap,” resulting in lower time estimates,
effectively delaying timed responses. We will show later that the
UTC model explains how the timing of the gap and the similarity of
the interrupting distractor and the to-be-estimated interval determine
delays in temporal responses (see the Forgetting of Timing
Information Accounts for the Effect of Interruptions section).
In some situations, we need to prospectively time an “empty”

interval with little to no external stimuli. In this case, we assume that
the network receives an internally generated, constant timing input.
Crucially, this timing input is represented in the same way as
stimulus inputs. As such, there is no difference between prospective
and retrospective timing apart from the fact that this input is used
to estimate time. Using a constant timing input ensures that time
estimates are largely independent of fluctuations or gaps in the
stream of stimulus inputs. As we will show later, the more inputs
are presented to the network, the more both timing and stimulus
inputs will be distorted. We will demonstrate that this pattern of
interference is similar to interference found in working memory,
which explains why higher working memory load (i.e., more
stimulus inputs) interferes with timing performance. Interestingly,
this same mechanism also explains why performing a timing task
degrades secondary task performance: The timing input interferes
with the representation of stimulus inputs as well (see the Neural
Normalization Explains Effects of Working Memory Load section).
Unlike previous models, the UTC model only incorporates an

attentional mechanism with respect to stimulus input. When more
selective attention is paid to stimuli, the input is multiplied by an
attentional gain factor, consistent with neurophysiological effects
of attention (Treue, 2001). As we will see later, this explains why
attended stimuli are perceived as longer than unattended ones:
Attentional gain increases the vividness of the stimulus input,
resulting in longer estimates (see the Attentional Gain Explains
Effects of Selective and Divided Attention on Time Estimation
section). Crucially, to model divided attention, the UTC model
assumes that when more attention is paid to timing, less attention is
paid to stimulus inputs. Because these stimulus inputs are partially
“ignored,” they have less opportunity to interfere with the timing
input. This both explains why attending to time increases
prospective time estimates (less interference), but also why paying
more attention to time interferes with secondary task performance
(stimulus inputs are less attended; see the Attentional Gain Explains
Effects of Selective and Divided Attention on Time Estimation
section).
The effects of cognitive load on time perception tend to suggest

that prospective and retrospective timing are different kinds of
processes. The UTC model, however, suggests a different view. In
cognitively demanding tasks, more divided attention needs to be
paid to incoming stimuli. These incoming stimuli compete with the
timing input, effectively decreasing prospective time estimates. In
contrast, when stimuli are attended more in retrospective timing,
they lead to more change being encoded in the temporal window,
increasing retrospective time estimates. The only difference between
prospective and retrospective timing is the timing input to the
network. But precisely because stimulus and timing information is
processed in the same way, can we account for the interaction effect
of cognitive load with a single parameter: The attention paid to
stimuli.

Method

In this section, we will detail the representational and
computational principles behind the UTC model. First, we describe
the LDN (Voelker et al., 2019), which a memory network that tracks
“what” happened “when” over a rolling window. We will describe
how complex information is represented by the network as high-
dimensional vectors (referred to as semantic pointers; Eliasmith,
2013). In Appendix B, we also demonstrate how to implement the
LDN as a spiking neural network. Finally, we will give a brief
overview of the full network architecture of the UTC model.

LDN

How do we represent “what happened when” up to some arbitrary
point in the past? Consider the case where we want to remember the
luminance of some light source from the current moment up to 1 s
ago. One could, in principle, store each new input on the first slot of
a memory register while moving already stored inputs along. The
input at the end of the memory register is dropped (after exactly 2 s).
At each point in time, the memory register perfectly represents a
temporal window of what happened when that spans the current
moment up to some point in the past.

There are some obvious problems with this approach, but the
most salient one is memory capacity. If we want to perfectly store
the history of an input that evolves through continuous time, we
would need infinite memory capacity. A more scalable solution is to
approximate the input’s history (Appendix A; Equation A1). Given
limited resources, the optimal way to represent the input history up
to some point in the past is with the Legendre polynomials (Voelker,
2019). Similarly to how a signal in the frequency domain can be
approximated by a finite combination of sines and cosines, a signal
in the time domain can be approximated by the Legendre
polynomials. This representation in the time domain is optimal in
the sense that it minimizes the root-mean-square error between the
representation and the history of the input up to some point in
the past.

The Legendre polynomials can be considered a “temporal basis
function,” from which one can construct a representation of input
history. In our model, we will use a shifted version of the Legendre
polynomials (Appendix A; Equation A2) that is defined over the
interval between 0 (now) and θ, where θ is the length of the temporal
window (i.e., up to when inputs need to be remembered). We will
denote the number of polynomials that are used (i.e., the order of the
approximation) as d. Each polynomial adds something unique to the
representation in the temporal window. The first dimension represents
the mean of the signal, the second one represents the slope, the third
one the quadratic component, and so on. We simply need to
determine how much “weight” we should give each polynomial and
add them up to form a representation of the input history. We will
denote these weights as the d-dimensional vector x: Each value in x
corresponds to a weight for its associated Legendre polynomial.

Given this optimal method of representing the input history, let us
consider how to construct such a representation on the fly, that is, we
need to specify the algorithm that can be used to generate such a
representation. Put differently, at each moment in time, we want to
know how to encode new inputs (u) while maintaining and updating
our current representation of input history (x). We want our system to
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represent the history of its input u(t) using a d-dimensional state
vector x(t), where each of the d coefficients applies to a different
dimension of our temporal basis function (the Legendre poly-
nomials). Since we have defined our challenge in continuous time,
the most natural way of viewing our system is as a dynamical system:

θẋðtÞ = AxðtÞ + BuðtÞ, (1)

where θ is the length of the window, x(t) is a d-dimensional state
vector, and ẋðtÞ is the temporal derivative of x(t). The input matrix
(B) defines how new inputs should be encoded, and the dynamics
matrix (A) defines how to maintain our current representation of
input history (for a detailed derivation, see Voelker, 2019). We can
think of the input matrix as mapping the new moment in time into
the Legendre polynomial space, in such a way that it is combined
with the previous representation of the input history without
distorting that history. At the same time, the dynamics matrix maps
the current history to the next moment in time, while “dropping” the
oldest point in the memory since that oldest moment is now longer
than θ seconds ago. Performing these mappings over and over
means that old information is constantly dropped, and new
information is constantly added so that, at any moment, the vector
x(t) contains exactly θ seconds of historical information.
Note that we have included θ as a variable in the dynamical

system that can be adjusted on the fly. If we want the system to only
remember the last 10 s instead of the last 20 s, we may decrease θ,
leading to faster encoding and forgetting of information. As
changing θ does not influence the dimensionality (i.e., the “storage
space” stays the same), the incoming information can be stored with
higher fidelity when θ is reduced. This demonstrates the inherent
balance in the system; it can either store information over longer
timeframes with lower fidelity or use the available resources to
capture the input at high fidelity over shorter time frames. To
illustrate how this system works, Figure 2 shows how the network
represents the last θ seconds of its input history.5

The shifted Legendre polynomials are timescale-invariant
because they are defined over 0 < θ′

θ < 1, where θ′ is a time point
within the temporal window. Therefore, for any θ, the underlying
temporal basis functions will be exactly the same, scaled by θ.
To illustrate, given a scaled input, the state-space representation at
θ′ = 10 ms for θ = 100 ms is exactly the same as the state space
representation at θ′ = 10 s for θ = 100 s. In sum, the underlying
representation of time is the same, regardless of the timescale that we
are dealing with. This suggests that the algorithm will apply well
across many timescales.
In the appendix (Appendix B), we describe how the algorithm can

be implemented as an RNN in a detailed, biologically plausible
neural framework.

Semantic Pointers

To this point, we have described how to implement an algorithm
that can represent a rolling window of a one-dimensional signal
(e.g., a network that only tracks the luminance of a single source of
light). However, the representations that are the part and parcel of
cognition are more complex. How do we move from a one-
dimensional representation to the representation of the letter “A” on
a screen or a complex tone that signals future rewards? A possible
solution to this problem is to assume that these symbollike entities

are represented as high-dimensional vectors that we call “semantic
pointers” (Eliasmith, 2013). Semantic pointers are compressed neural
representations that provide a consistent representational protocol
for supporting a wide variety of biological behaviors, including
perception, action, decision making, and symbolic cognition.
Semantic pointers, along with the architecture they are a part of,
have been used to build the world’s largest functional brain model,
Spaun (Eliasmith et al., 2012). This architecture is implemented with
the Neural Engineering Framework (NEF) as it naturally extends to
high-dimensional vector representations. In the UTC model, we use
the methods of semantic pointers to capture the different concepts
being represented at different points in time.

The LDN described in the previous section also naturally extends
to representing a rolling window of vectors, which can, for instance,
be semantic pointers. Instead of presenting a one-dimensional signal
to an LDN, we can present a D-dimensional semantic pointer to D
networks that each encode a rolling window of a single dimension
of the semantic pointer.6 Therefore, the collectiveD × d state matrix
X represents a rolling window of the history of semantic pointers.
To decode the original semantic pointers, we first decode the history
of each component of the semantic pointers by multiplying the state
vector with the Legendre polynomials ðSPhistory = XPT Þ. Then, we
compute the column-wise dot product between the resulting D × t
matrix (SPhistory) and the originally presented semantic pointers
(Figure 3).

Semantic pointers allow for complex information processing,
from action selection to abstract reasoning (Eliasmith et al., 2012).
In our current model, however, we only use semantic pointers to
simulate how stimuli are represented in typical cognitive and timing
tasks. Nevertheless, this high-dimensional vector representation is
a core explanatory principle in the UTC model. As we will see
later, by assuming that both timing information and “stimulus”
information are represented by semantic pointers, the UTC model
accounts for phenomena where these types of information interact
(e.g., stimulus-distractor similarity effects in gap procedures,
working memory load effects on prospective timing, and the effect
of selective and divided attention on prospective and retrospective
timing).

The UTC Model—Network Architecture

The sections above describe the mechanisms relevant to the
implementation of the UTC model, to which we will now turn. The
basic premise of the UTC model is that both stimulus and timing
information are represented, encoded, and read out in the exact same
way. That is, both types of information are represented as semantic
pointers, encoded by the LDN, and read out by integrating the
representations in the temporal window of the LDN. The only
difference is that stimulus inputs are waxing and waning whereas
the timing input is assumed to be relatively constant. Crucially, we
propose that this is also the only difference between prospective
and retrospective timing. Only when the timing task is known
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5 A more intuitive way to understand the LDN is to see it operate in real
time (see this video version of Figure 2 at https://youtu.be/2jNp6Sf_Vsc).

6 Our implementation of separate LDNs representing a single dimension
of the semantic pointer is just one possible implementation. Alternatively, a
single recurrent neural network could have neurons sensitive to certain
directions in the D × d space.
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beforehand (prospective timing) can we have a constant timing
input, otherwise the network can only reconstruct a temporal
estimate based on stimulus information. The network architecture is
presented in Figure 4, alongside its fixed and free parameters in

Table 1 and activity traces for a typical trial in a dual-tasking timing
experiment in Figure 5.

The inputs to the network are D-dimensional (64-dimensional in
these simulations) vectors and come from two external sources:
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Figure 3
Network Example With Semantic Pointers

·SP 

Note. The input (top row) is a series of D-dimensional vectors, semantic pointers (SP). We plot the dot product between the
input state and the ideal vectors. The network (d = 6) continually updates the state vector X containing coefficients (second row)
on the temporal basis functions for each of the separate components of the input vector. At any point in time, the network has an
instantaneous representation of the last θ seconds (here, 2 s) of its input history. When we take the coefficients in x at 3 s (dots in the
second row) and decode the history of each input component (SPhistory = XPT; third row), we can compute the dot product with the
set of original vectors to decode the history of original semantic pointers. See the online article for the color version of this figure.
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stimulus information (s) and temporal information (t). Stimulus
information encodes external stimuli that are encoded for the task at
hand (Figure 5). Temporal information feeds a constant, steplike
input to the network, with its onset matched to the to-be-timed
interval (Figure 5). In some experimental paradigms, this interval is
filled (i.e., the stimulus stays on the screen for the duration of the
interval), while in others, the interval is empty (i.e., onset and offset
are defined by brief stimuli with nothing in between). A consistent
finding in the literature is that “filled” durations are perceived as
longer than empty durations (J. H. Wearden & Ogden, 2021). For
simplicity, we assume that in both scenarios, the network is fed a
constant input whether it is defined by a filled stimulus or whether
it is self-sustained activity. This self-sustained activity can be
readily implemented in the NEF (see for instance, Bekolay,
Laubach, et al., 2014).
While our network clearly separates stimulus and temporal

information into separate input channels, this is only done for
clarity. Both sources of information are summed together in the next
step, meaning that not their source but their content determines how
they drive behavior. This assumption is in stark contrast to PA
models, which assume that, regardless of stimulus content, timing
behavior is driven by the reading of an accumulated “clock” reading.
While specific kinds of stimulus content may trigger the onset of
accumulation, stimulus content plays no role in subsequent timing
processes. The UTC model, on the other hand, proposes that timing
behavior critically depends on an integrated representation of
exactly the stimulus content it is supposed to track.
The neural population xinput combines t and s by adding the two

vectors together. Temporal information (t) is always a constant,
unit-length input, ensuring stable timing behavior. However, we
assume that the model can control how much it attends to stimulus
inputs (s) by multiplying that vector by an attentional gain factor
(gs).

7 When gs is high, stimulus information will be better decodable
from xinput (Figure 5). This attentional gain factor gs, as we will see
later, captures the effects of selective attention on time perception,
models the effects of divided attention by controlling the degree of

mutual interference between temporal (t) and stimulus information
(s), and explains differential effects of cognitive load on prospective
and retrospective timing.

The D-dimensional vector in xinput is fed toD LDNs, collectively
denoted as X. In effect, X is a D-by-d matrix, containing the
coefficients on our temporal basis function for each dimension of the
D-dimensional input vector xinput. To encode the new information
into the temporal window, each input dimension is multiplied by B′
and by θ−1, which controls how quickly new information is encoded
into the window on the fly. Information already inside the temporal
window, represented by X, is gradually pushed outside of the
window through multiplication with the recurrent matrix, defined
by A′. Again, the speed at which information is pushed outside of
the window (i.e., forgotten) depends on window size (θ) and is
controlled by setting θ−1. In Section One-Shot Learning of Window
Size Explains Rapid Temporal Learning, we propose a one-shot
learning rule that can learn to match the window size to the
appropriate timescale of the task. Given the speed and accuracy of
this learning rule, and to simplify our modeling, we simply fitted θ
to match the correct timescale of the timing task. For instance, when
a 10-s interval needs to be produced, θ was set to 10 s.

At each moment in time, the LDNs (X) represent a rolling
window of its input (xinput). This representation would allow for
complex judgements about temporal patterns; however, in this
article, we are only concerned with one-dimensional judgements
about single intervals (e.g., “how long did the task last?” or “press
this button after 2 s”). We propose that these one-dimensional time
estimates (ts) are made by integrating the absolute represented value
for each semantic pointer over the entire window and summing up
those integrated values for all semantic pointers that are represented
in the window:

ts =
XN
i=1

ð
0

−θ
jXðtÞPT · SPijdt, (2)

where · is the dot product, X is the d × D matrix of coefficients
represented by the network at time t,P are the Legendre polynomials,
SPi is the ith semantic pointer in the vocabulary (i.e., the set of
possible semantic pointers that we feed into the network), and N is
the number of semantic pointers in the vocabulary (see Figure 3).
Here, the difference between prospective and retrospective estimates
is that prospective estimates are only based on the “temporal”
semantic pointer (t) while retrospective estimates are based on
semantic pointers presented by the stimulus input (s).

All code and simulation data are available on GitHub at https://gi
thub.com/dejongejoost/UTC_model.

Results

To prospectively produce an interval, we present the network with
a constant input that is integrated until it reaches a fixed threshold at
which time it produces a response. Different intervals are produced
by adjusting the window size to match the desired interval. The
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Figure 4
Network Architecture of the Unified Temporal Coding Model

Note. The network receives two external inputs: a temporal vector t and a
stimulus vector s. The stimulus vector is multiplied by an attentional gain
factor (gs). The input vectors are added in the neural population xinput. Each
dimension of xinput is fed into a separate Legendre delay network,
collectively referred to as the neural population X. The input matrix B′
encodes inputs into the window represented by X, and A′ pushes past inputs
toward the end of the window until they are eventually forgotten. The length
of the temporal window (θ) is adapted by controlling the rate of encoding and
forgetting (θ−1), which is a result of simply multiplying the input matrix B′
and recurrent matrix A′ by θ−1. See the online article for the color version of
this figure.

7 Note that, in the UTCmodel, attentional and recurrent gain are different.
Recurrent gain (θ−1) multiplies the recurrent and input matrices of the LDN
network. As a result, it scales the window size. Attentional gain, on the other
hand, only multiplies the stimulus vector. As a result it increases the
decodability of the stimuli.
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desired interval is provided in the experimental instructions. The
window size θ is adjusted by controlling the recurrent gain θ−1,
which corresponds to controlling the speed at which the input is
integrated. Increasing the recurrent gain will result in a shorter
temporal window and will therefore produce a response after a
shorter interval while decreasing the recurrent gain will result in a
longer temporal window and produce a response after a longer
interval (Figure 6). Our approach is highly similar to some PA
models, in particular TDDMs (Simen et al., 2013), where the speed

of integration (i.e., drift rate) is adjusted to produce different
intervals. Further, when we implement a first-order LDN, this
network represents the mean of the temporal window, correspond-
ing to a leaky integrator with a time constant that equals window
size (θ).

In contrast to producing an interval, the exact timescale for
integrating inputs is not known in perceptual timing tasks since the
target interval is not known at stimulus onset. Therefore, adjusting
the recurrent gain of the network on a trial-to-trial basis alone is not
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Table 1
Network Architecture Parameters

Name Description Value

Inputs
D Dimensionality of semantic pointers 64
gs Attentional gain on stimulus input s Varies between conditions and experiments (default = 1)

X
θ Window length Matched to relevant timescale
θ−1 Speed of integration and forgetting Inverse of θ
d Dimensionality of LDN; controls precision of represented history Fixed within experiments; varies between (sets of) experiments
N Number of neurons per LDN dimension 200 (unless otherwise indicated)
Max rate Maximum firing rates of neurons in LDN Matched to maximum firing rates in modeled neural data
τθ−1 Synaptic time constant for θ−1 → X 0.005
τrecurrent Synaptic time constant for X → X 0.1

Note. LDN = Legendre Delay Network.

Figure 5
Activity Traces During Dual-Task Timing

Note. On the left, the temporal information (t), on the right, stimulus information (s). First row: input to the memory population
(wmi). Second row: temporal (left) and stimulus information represented in xinput. When gs is increased (darker colors), meaning
that more attention is paid to incoming stimuli, stimulus information is represented more clearly and interferes with the temporal
information. Third row: example traces from the Legendre delay network populations that are sensitive to either temporal or
stimulus information. Bottom: “internal time,” the decoded temporal window at treal = 1 s. Final row: The network represents the
last second of its inputs. The network simultaneously represents temporal (left) and stimulus information (right; first presented
stimulus in blue). For higher values of gs, the stimulus information is represented better to the detriment of temporal information.
See the online article for the color version of this figure.
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an effective timing strategy. Nevertheless, it is evident that subjects
are sensitive to the distribution of intervals that have to be timed in a
given context (e.g., de Jong et al., 2021; for reviews, see Shi et al.,
2013; van Rijn, 2016). In the current model, adapting the window
size based on the estimated mean of the distribution would improve
performance compared to using the same window size for each
temporal context. For instance, when an interval of 1 s has to be
estimated, the network will not be able to tell time if the window size
is 0.1 s: The state will have evolved to its maximum value too soon,
and any differences between intervals thereafter are lost. In contrast,
a temporal window of 10 s will also render differences in the state
around the target duration too small since the state evolves too
slowly. There is some neurophysiological evidence to support the
claim that the speed of neural dynamics during the perception of an
interval is adapted to the expected range of intervals. For instance,
when a short (long) interval is expected, neural trajectories in the
dorsomedial prefrontal cortex move faster (slower; Sohn et al.,
2019). Some evidence suggests that these speed adjustments may
happen on a trial-to-trial basis; when a previous interval is short
(long), neural dynamics move faster (slower; Damsma, Schlichting,
& van Rijn, 2021).
To account for time perception, we assume that the window size

remains constant for different target intervals and is normally
distributed around the target interval. On each trial, we present the
network with a constant input that is terminated after the target
interval has elapsed (Figure 6). It is clear that for a fixed window
size, the neural state will represent different values for different
target intervals. In Figure 6, a 1-s interval is repeatedly estimated,
and the recurrent gain varies normally around 1.

Different Sources of Noise Account for Different Forms of
Timing Variability

The scalar property of time (Gibbon, 1977), that is, the linear
scaling of the standard deviation of time estimates with its mean, has

long been assumed to be a lawful property of timing. The most
straightforward way of testing the scalar property is by assessing
whether the coefficient of variation (CV; σ

μ) of time estimates is
constant over a range of different target intervals. Despite much
evidence suggesting that the scalar property generally holds
(Lejeune & Wearden, 2006; J. H. Wearden & Lejeune, 2008),
several theoretically interesting exceptions have emerged. For
instance, in a set of experiments with target intervals ranging from
68 ms to 16.7 min, Lewis and Miall (2009) found a consistently
decreasing CV. In contrast, other researchers have found that the CV
first decreases and then increases for longer intervals (e.g., Bangert
et al., 2011; Bizo et al., 2006; Getty, 1975; Gibbon et al., 1997;
Grondin, 2014; Matthews & Grondin, 2012).

Explaining different forms of scalar variability prompted us to
look at different sources of noise in our network. PA models of
timing have demonstrated that, depending on which component is
affected by noise, this may either reproduce the scalar property or
show a decreasing coefficient of variation or an increasing
coefficient of variation (for an extensive review, see Simen et al.,
2013). The brain is a noisy system, so it is likely that many
components in our network (e.g., input, window size, individual
neurons) will be affected by noise to some degree, both within a
single trial and between trials. The UTCmodel does not make strong
assumptions about different sources of noise since these may vary
between subjects, tasks, and even over the course of learning.
Nevertheless, we will analyze two sources of noise that are
theoretically most relevant in our network: within-trial noise in the
input and between-trial noise in recurrent gain. Within-trial noise is
central to recent explanations of the scalar property in PA models
(Simen et al., 2013). More specifically, a constant CV is produced
when within-trial noise in diffusion is scaled by the square root of
the drift rate (which is a result of balancing excitatory and inhibitory
inputs to the accumulator). However, some of these PA models also
assume that the pacemaker speed is adjusted on a trial-to-trial basis
(Simen et al., 2011a), which is corroborated by neurophysiological
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Figure 6
Prospectively Producing and Perceiving an Interval of 1 s

Note. (A) When the network produces time intervals, the network integrates a constant input until a threshold (dotted line) is
reached, upon which a motor response is made. If the speed of integration is faster (slower), the produced interval (tp) will be
shorter (longer). (B) When the network perceives an interval, a constant input is integrated until the end of the interval (dotted
line). The state of the network at the end of the interval serves as a measure of time. If the speed of integration is faster (slower), the
perceived interval (ts) is longer (shorter). See the online article for the color version of this figure.

NEUROCOMPUTATIONAL MODEL OF TIMING 795



evidence (Wang et al., 2020). Surprisingly, this trial-to-trial
variability does not feature explicitly in their explanation of the
scalar property.
To examine the role of noise in interval production and perception,

we take the mathematical implementation of our network and perturb
the input and recurrent gain (θ−1) with noise.Within individual trials,
the constant input to the network is normally distributed. That is, the
input is 0 before the start of the interval andN ðμ = 1, σ = σinputÞ for
the duration of the interval, such that on each timestep of the
simulation a random sample is taken from this normal distribution.
We consider a scenario in which σinput is constant and a scenario in
which σinput scales with

ffiffiffi
θ

p
. On a between-trial level, a value drawn

from a normal distribution,N ðμ = 0, σ = σrecurrent gainÞ, is added as a
constant to θ−1 throughout each trial.
For producing intervals, we follow the rationale described above:

Different intervals are produced by adjusting the mean recurrent
gain. We simulated 250 trials per target interval for different levels
of within-trial noise in the input and between-trial variability in the
recurrent gain. Our findings suggest that different sources of noise
will produce different forms of scalar variability (Figure 7). In
particular, we found a constant CVwhen σinput is scaled by

ffiffiffi
θ

p
. That

is, the UTC model can explain adherence to the scalar property
by assuming that noise in the input somehow scales with

ffiffiffi
θ

p
. When

σinput is constant, we observe a decreasing coefficient of variation
across different levels of noise, clearly violating the scalar property.
These observed patterns are in line with findings of decreasing CVs
over time (e.g., Damsma, Schlichting, van Rijn & Roseboom, 2021;
Lewis & Miall, 2009). When between-trial noise in recurrent gain
is added (while assuming σinput = m

ffiffiffi
θ

p
), CV increases over the

tested range of intervals. These findings may therefore explain some
violations of the scalar property where the CV increases for longer
target intervals (e.g., Bangert et al., 2011; Bizo et al., 2006; Getty,
1975; Gibbon et al., 1997; Grondin, 2014; Matthews & Grondin,
2012). In sum, input noise and between-trial recurrent gain
variability can account for decreases and increases in CV,
respectively.
While a constant CV is a clear sign of timescale invariance, there

are more demonstrations. For example, the entire distribution of
timing behavior often scales with the target time (for a review, see J.
H. Wearden & Lejeune, 2008). This “superimposition” property of
timing behavior is most readily assessed by plotting responses on a

relative timescale by dividing the response times by their mean, in
the case of temporal (re)production. If timescale invariance holds,
these distributions should overlap perfectly. Here, we model an
experiment by Simen et al. (2016), who found overlapping
normalized response time distributions for a range of target times
(2.2 s, 5.1 s, and 11.3 s). When we simulate response times (N =
1.000 per duration) from the UTC model under the assumption that
σinput = 2

ffiffiffi
θ

p
, we found good superimposition of relative response

times, with an overall CV of 0.2, matching behavioral data well (see
Figure 8). This suggests that the UTC can approximate true
timescale invariance. It should be noted, however, that other models
have closed form solutions that guarantee timescale invariance (e.g.,
TDDMs, TILT), and as such, they have an edge over models that
only approximate it.

For perceiving time intervals, we follow the rationale outlined
above. The mean window size is manually matched to the target
interval, assuming that the target interval does not vary much from
trial to trial. In effect, this modeling setup resembles classic
psychophysical timing experiments, where the criterion interval
only varies between blocks, not within blocks (Getty, 1975). This
procedure ensures that the effects of the distribution of intervals
within a block are minimized, resulting in a cleaner estimation of
scalar variability. As we have seen before (Figure 6), the network
representation at the end of the interval depends on the window size.
In other words, the network represents the duration of the interval
relative to the window size. Therefore, to generate a response that is
only based on the perceived interval, we multiply the value
represented by the network by the mean window size (θ) and the
inverse of the fixed threshold

�
1

threshold

�
to obtain the estimated

interval (ts). This correction effectively rescales the “relative” time
in the window back to “objective” time. For time perception, we
obtain similar results to time production (Figure 9). When the only
source of noise is in the input, the CV decreases while trial-to-trial
variability in the recurrent gain causes an increasing CV.

One-Shot Learning of Window Size Explains Rapid
Temporal Learning

Humans and nonhuman animals can quickly adapt the timing of
their behavior to changing temporal contingencies. Accurate timing
of new target intervals can be accomplished in as little as one or two
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Figure 7
Coefficient of Variation (CV) for Time Production Under Different Assumptions About Within- and Between-Trial Noise

Note. CV is plotted across a range of produced target intervals. In the left panel, the within-trial noise in the input signal (σinput) is assumed to scale with
ffiffiffi
θ

p
,

with m determining the overall level of noise. This scaling produces approximately flat CV over mean produced interval, with m scaling the overall level of
noise. In the middle panel, σinput is assumed to be constant (m), which produces a decreasing CV. In the right panel, σinput is assumed to scale with 2

ffiffiffi
θ

p
, but

between-trial noise in the recurrent gain (σgain) is varied. This produces an increasing CV over the target interval.
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trials (Komura et al., 2001; Mello et al., 2015; Simen et al., 2011a).
These findings put a lower bound on the learning rate that a model
should exhibit. This is especially important for the UTC model,
which assumes that to accurately produce or perceive an interval, the
window size (θ) is matched to the target interval. How can window
size be learned so rapidly? We have taken inspiration from one-shot
learning rules developed by TDDMmodels, which can adapt neural
ramping speed to new intervals after a single exposure. We adapted
these learning rules to the UTC so that θ can be learned.
The learning rules consist of an “early-timer rule” and a “late-

timer rule.” Consider the scenario where the model needs to respond
as close as possible to a target interval (but not after it has already
ended). When the UTC model responds too early, it should increase
θ so that on the next trial, it will respond later. The early-timer rule
employed by TDDMs specify how the rate of neural integration

(which is akin to θ−1 in the UTC model) should be decreased in real
time, starting from the response until the end of the interval. It turns
out that this learning rule can be applied to the UTC with little
modification to explain rapid learning of longer θ (see Figure 10).
From the moment that the model responds until the end of the
interval, the recurrent gain is decreased θ−1 at a rate of (θ−1)2. The
late-timer rule details how θ should be decreased when the model
responds too late. When the model responds too late, θ needs to be
decreased by the relative distance that still needs to be traversed by x
until the threshold. Again, this decrease in θ can be implemented
through the late-timer rule employed by TDDMs, without much
modification (although it should be noted that the accuracy of the
late-timer rule depends on d). In effect, the recurrent gain (θ−1)
needs to be increased by θ−1 × threshold− x

x . Intuitively, when x is at the
threshold exactly when the interval ends, there is no update. If x is
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Figure 8
Superimposing Normalized Response Time Distributions

Note. To demonstrate true timescale invariance in the unified temporal coding model, we model
the time production experiment by “Scale (In)variance in a Unified Diffusion Model of Decision
Making and Timing,” by P. Simen, K. Vlasov, and S. Papadakis, 2016, Psychological Review,
123(2), pp. 151–181 (https://doi.org/10.1037/rev0000014). The model produces intervals of 2.2 s,
5.1 s, or 11.3 s. Here, we assume that σinput scales with 2

ffiffiffi
θ

p
, which produces a coefficient of

variation of around 0.2. In the left panel, the response time density functions center around the target
interval and becomes progressively wider with target interval. In the right panel, response times are
normalized by θ. The overlap between normalized response time distributions suggests timescale
invariance. See the online article for the color version of this figure.

Figure 9
Coefficient of Variation (CV) for Time Perception Under Different Assumptions About Within- and Between-Trial Noise

Note. CV is plotted across a range of perceived target intervals. Similar results to time production are obtained for different assumptions about noise.
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only halfway there, then θ−1 should be doubled. The two learning
rules work in concert to rapidly adapt θ to accurately produce
intervals (see trial by trial in Figure 11). In turn, learning the window
size in UTCmirrors adaptive “temporal scaling” of neural responses
to target intervals, which we discuss next.

Changes in Window Size Explain Temporal Scaling in
Complex Neural Patterns

As discussed earlier, the neural firing patterns during timing
performance are diverse (e.g., ramping, decaying, time cell activity).

Further, these same complex responses compress and stretch as
shorter and longer intervals are timed, respectively. How does our
network explain both of these features? First, instead of having a
single node that represents a dimension in the network, each spiking
neuron in our recurrent network encodes a particular combination of
dimensions (see Appendix B). For instance, a single neuron may be
sensitive to positive values of the first dimension (meaning an
increase in firing rate when the mean of the signal in the temporal
window becomes more positive) while at the same time being
sensitive to negative values of the second dimension (meaning a
decrease in firing rate when the slope of the signal in the temporal
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Figure 10
Early and Late Timing Rules Employed by the Unified Temporal Coding (UTC) Model

Note. In the top panel, the UTC model produces an interval of approximately 2 s on trial n while
the actual target interval is 5 s. The early timing rule decreases θ−1 continually from the moment of
responding (when x crosses the threshold) until the target interval ends. On trial n + 1, the window
size (θ) more closely matches the target interval of 5 s

�
i:e:, θ−1≈ 1

5

�
. In the bottom panel, the UTC

model has not reached the response threshold yet when the 2-s interval is already over on trial n. The

late timer rule increases θ−1 so that on trial n+ 1, the window size (θ) more closelymatches the target
interval of 2 s

�
i:e:, θ−1≈ 1

2

�
. See the online article for the color version of this figure.
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window becomes more negative). This heterogeneity of tuning in
our spiking neurons systematically captures heterogeneity observed
in electrophysiological experiments. A separate population of
neurons controls the window size, where individual neurons may
encode increases or decreases in window size, therefore speeding up
or slowing down neural dynamics. In this section, we demonstrate
that the network can jointly capture behavioral and neural data from
a temporal production task (Wang et al., 2018) and a perceptual
timing task (Gouvêa et al., 2015).

Temporal Production (Wang et al., 2018)

In this section, we model a study by Wang et al. (2018), who
found that during a temporal production task, neural firing patterns
in several brain areas are highly heterogeneous and whose activity
exhibited temporal scaling. Wang et al. (2018) recorded single-cell
activity from multiple brain areas that are believed to be crucial for
temporal production: the medial frontal cortex (MFC), caudate
(striatum), and thalamic neurons that projected to MFC. In this task,
monkeys were presented with a colored cue at the start of each trial,
indicating whether they had to produce an interval of 800 ms (red) or
1,500 ms (blue). Then, after some delay, a “set” stimulus was
presented, marking the onset of the target interval. Monkeys were
required to produce a motor response after the cued interval had
passed and were rewarded if their produced interval was close
enough to the target. Wang and colleagues found that neural firing
patterns during the interval were highly heterogeneous, containing
neurons with ramping, decaying, oscillating, and more complex
temporal profiles.
The authors systematically assessed several classic model

alternatives, such as oscillatory models, ramping activity with a
flexible threshold, flexible ramping speed, or both a flexible
threshold and speed; however, these models were unable to capture
the heterogeneity of the observed neural responses. In contrast, the
best fitting model was one in which the firing patterns were fit with a
single polynomial for each neuron that stretched or compressed
along the time axis depending on the length of the produced interval.

The degree of scaling on individual trials was highly predictive of
behavior. Interestingly, neural responses in the thalamus exhibited
significantly less temporal scaling than MFC or caudate. Instead, a
major portion of the variance in thalamic activity was explained by a
component where activity remained constant throughout the
interval, but the mean activity scaled with the produced interval.
These findings imply that the thalamus may be involved in
controlling the speed of neural dynamics in brain areas MFC and
caudate. Wang and colleagues were able to model this division of
labor with an RNN, where the recurrent units received a constant
input throughout the interval that scaled with the desired interval.
This constant input, which is thought to reflect thalamic input to
MFC, effectively controlled the speed of the neural dynamics, which
in turn allowed the network to produce the desired intervals.

The UTC model resembles the speed control mechanism
uncovered by Wang et al. (2018). We modeled their experiment
by setting up the spiking implementation of the LDN (d = 3, N =
600). As described before, we assumed that the network receives a
constant input throughout the produced interval. The interval is
terminated when the readout of the network reaches a certain
threshold. This allowed us to produce target intervals (T) of 0.8 s
or 1.5 s by setting the temporal window to those values. In
other words, we adjusted the speed

�
1
θ

�
to produce different intervals.

In the UTC network architecture, this is achieved by jointly
multiplying the input and recurrent activity by 1

θ so as to control the
rate of encoding and forgetting, respectively. The speed was
normally distributed across trials N ðμ = 1

θ , σ = 0.1Þ. This naturally
produced more variable response times for the longer intervals
(σ0.8 = 64 ms, σ1.5 = 164 ms), mirroring behavioral results from
Wang et al. (2018).

We simulated the model 50 trials for each target interval. In
Figure 12, we show the firing patterns of several representative
neurons, which are highly heterogeneous, similar to those found by
Wang et al. (2018). This heterogeneity is due to individual neurons
being sensitive to different combinations of the underlying state
vector x. We performed no hand tuning of neurons to generate these
responses. Instead, we randomly chose combinations of dimensions
over the unit hypersphere, which allows each point in the state
vector to be equally likely to be represented by the neurons (see
Appendix B). As a result, some neurons exhibit upward ramping
since they are mainly sensitive to positive changes in the first
dimension. Other neurons have “bell-shaped” firing patterns since
they are predominantly sensitive to negative values in the second
dimension. Further, when the trials are binned according to response
time, the neural firing patterns exhibit scaling along the time axis:
Firing patterns are “stretched” for longer intervals and “compressed”
for shorter ones. In sum, adjusting window size accounts for both
behavior and the temporal scaling of heterogeneous response
profiles in MFC and caudate.

The connection between the polynomials used by Wang et al.
(2018) and the Legendre polynomials in our network is readily made.
In particular, the Legendre basis is a polynomial basis, one which is
optimal for minimizing representational error. The main difference is
that the UTC model provides a process account of how a polynomial
basis is continuously updated to represent time, instead of fitting a
polynomial basis to observed neural data. One consequence of this is
that our mechanistic account of heterogeneity suggests a general way
to model neural timing data, which can in turn inform the optimal
dimensionality of our network for a given task. Future work should
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Figure 11
Rapid Learning of New Target Intervals

Note. We initialize the unified temporal coding model to produce 10-s
intervals by setting θ= 10. Then, the target interval (dashed line) changes to 2
s, and the model rapidly adapts to this shorter target interval through the late
timer rule. After several trials, the target interval increases to 5 s. The early
timer rule allows the model to rapidly adapt θ to match this new target
interval.
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quantify how well the UTC model can account for the heterogeneity
of neural patterns observed in timing tasks, from simple ramping
neurons to complex oscillatory responses.

Time Perception (Gouvêa et al., 2015)

In this section, we model an experiment by Gouvêa et al. (2015),
who found that the speed of neural dynamics in the dorsal striatum
explained sensory interval timing on a trial-to-trial basis. Rats were
trained to perform a duration categorization task: They had to judge
whether auditory intervals were longer or shorter than the mean
interval of 1.5 s. The dorsal striatum was found to be crucial for
timing performance since performance dropped significantly when
it was pharmacologically inactivated. Individual neurons in the
striatum were sensitive to different intervals: During the presenta-
tion of the longest interval, some neurons decreased their firing rates
over time, some had peak firing rates somewhere in the middle of the
interval, and others increased their firing rates over time. Crucially,
Gouvêa et al. (2015) found that the speed at which the neural firing
rates changed predicted behavior. A principal component analysis
(PCA) revealed a subspace that explained most of the variance,
containing a ramping and a bell-shaped component. When the

neural state evolved slower through this space, rats were more likely
to classify the interval as short (i.e., as if less time had passed), and
when the neural state evolved quicker, rats responded “long” more
often (i.e., as if more time had passed).

We modeled the experiment by Gouvêa et al. (2015) with the
spiking implementation of the LDN (d = 3, N = 600). We presented
the network with a constant input for the duration of the sample
interval. We assumed that the mean window size matched the
maximum of the presented sample intervals, which was 2.4 s. This
ensures that the network represents an overall accurate representa-
tion of elapsed time across sample intervals. We generate behavioral
responses according to this readout at the end of the interval: If it
was lower than 0.7 (which we set to match behavioral data), the
model response was “shorter,” else the model responded “longer”
(Figure 13). Across trials, we assumed that the recurrent gain was
distributed according to a normal distribution N ðμ = 11.5; σ =
0.15Þ, qualitatively recreating the variability in “neural speed” found
in the empirical data. First, we found that the model was able to
perform the task well, resembling the performance of the rats (Figure
14). Then, we visualize the normalized neural activity for the longest
interval in a heatmap (Figure 15), where neurons are sorted
according to their peak times. Individual neurons peaked during the
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Figure 12
Heterogeneity and Temporal Scaling of Neural Responses

Note. The UTC model qualitatively fits the heterogeneity found in MFC neural responses, with
ramping neurons, decaying neurons, oscillating neurons, and neurons with activity bumps. Further, these
responses scaled along the temporal axis according to the produced interval, where red hues represent
short intervals and blue hues represent long intervals. UTC = unified temporal coding; MFC = medial
frontal cortex. Reprinted from “Flexible Timing by Temporal Scaling of Cortical Responses,” by J.
Wang, D. Narain, E. A. Hosseini, andM. Jazayeri, 2018,Nature Neuroscience, 21(1), p. 104 (https://doi
.org/10.1038/s41593-017-0028-6). CC BY 4.0. See the online article for the color version of this figure.
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start, middle, and end of the interval, providing a fair match to the
firing patterns in dorsal striatum found by Gouvêa et al. (2015). This
time cell activity by the LDN was first shown by Voelker and
Eliasmith (2018) and is similar to time cell activity found in the
hippocampus (Eichenbaum, 2014), entorhinal cortex (e.g., Heys &
Dombeck, 2018), prefrontal cortex (e.g., Tiganj et al., 2017), and
striatum (e.g., Mello et al., 2015).
Finally, following the analysis in Gouvêa et al. (2015), we

performed a PCA on the simulated neural data for the 1.62-s interval
(Figure 16). In line with previous interval timing studies, the first
component was a “ramping” component, and the second component
was bell-shaped (e.g., Emmons et al., 2017; Wang et al., 2018).

Importantly, when the data were split on response, we observed that
“short” responses were associated with a slower trajectory through
this PCA space whereas long responses were characterized by a faster
trajectory. In other words, when the neural clock moved faster, the
UTC model estimated that more time had passed, similarly to the rats
in Gouvêa et al. (2015). These results suggest that variability in neural
speed in our neural network is sufficient to qualitatively account for
both behavioral and neural data in a time perception task.

Forgetting of Timing Information Accounts for the Effect
of Interruptions

A prominent reason why the “internal clock” metaphor is so
appealing is that subjects seem to be able to start, stop, and reset their
internal clock. This ability is most obvious from procedures where
the timed signal is interrupted by gaps or distractors (for a review,
see C. V. Buhusi & Meck, 2009a). In peak interval procedures,
subjects learn to respond when the timing signal (e.g., a light or a
sound) has been on for a certain amount of time. When a gap or
distractor is inserted into the timed signal, three patterns of behavior
can be predicted from the perspective of an internal clock (Roberts &
Church, 1978). First, subjects may not delay responding, as if
“running” their clock throughout the interrupting event. Second,
subjects may delay their response by the duration of the interrupting
event as if they stopped or paused their internal clock and resumed
timing after the event. Third, subjects may delay their response by
the sum of the preevent interval and the duration of the interrupting
event as if completely resetting accumulated time. However, these
three patterns of behavior are not discrete possibilities but seem to
exist on a run–stop–reset continuum (C. V. Buhusi &Meck, 2009a).
When properties of the interrupting event are parametrically varied,
such as the onset, duration, or similarity to the timed signal, the
delay in responding also varies continuously (C. V. Buhusi et al.,
2006). This has prompted theoretical accounts to consider a more
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Figure 13
Modeling Interval Categorization in Gouvêa et al. (2015)

Note. On the y-axis, the first dimension of the Legendre delay network; on
the x-axis the time since interval onset. The decision boundary determines
whether the interval is categorized as shorter (if lower than the decision
boundary) or longer (if higher than the decision boundary). See the online
article for the color version of this figure.

Figure 14
Behavioral Performance on the Interval Categorization Task

Note. On the y-axis, probability of long responses; on the x-axis the interval duration. Logistic
regressions were fit to the data. UTC = unified temporal coding. Adapted from “Striatal
Dynamics Explain Duration Judgments,” by T. S. Gouvêa, T. Monteiro, A. Motiwala, S. Soares,
C. Machens, and J. J. Paton, 2015, eLife, 4, Article e11386, p. 5 (https://doi.org/10.7554/eLife
.11386). CC BY-NC. See the online article for the color version of this figure.
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continuous mechanism that includes running, stopping, and
resetting behavior as special cases. A natural candidate for such
a mechanism is memory decay (Cabeza de Vaca et al., 1994).
Indeed, “run” patterns can be observed when decay is much less than
the rate of ongoing accumulation, “stop” patterns may be observed

when decay and accumulation cancel out perfectly, and “reset”
patterns may be observed when decay is much larger than
accumulation (C. V. Buhusi & Meck, 2009a).

The UTC model has a natural connection to previous models that
assume a decay of accumulated time during interrupting events. We
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Figure 15
UTC Model Captures Neural Dynamics in a Time Perception Task (Gouvêa et al., 2015)

Note. Individual neurons are plotted on the y-axis, time is represented on the x-axis, and color represents normalized firing rate.
Individual neurons are sorted according to when their firing rate peaks. Neurons that fire early in the interval are plotted in the
lower parts and neurons that fire later are plotted in the upper part. UTC = unified temporal coding. Adapted from “Striatal
Dynamics Explain Duration Judgments,” by T. S. Gouvêa, T. Monteiro, A. Motiwala, S. Soares, C. Machens, and J. J. Paton,
2015, eLife, 4, Article e11386, p. 5 (https://doi.org/10.7554/eLife.11386). CC BY-NC. See the online article for the color
version of this figure.

Figure 16
Principal Component Analysis on Simulated Neural Data for the 1.62 s (Middle) Interval

Note. The first principal component (PC1; x-axis) shows a ramping profile over time whereas the
second principal component (PC2; y-axis) shows a bell-shaped profile. Neural data were split between
short and long responses, and their neural trajectories were projected onto the common principal
components. The dots (red for short, blue for long) are evenly spaced time points between interval
onset and offset. Connected dots represent the same intermediate time point. The trajectory moves
faster for long estimates (red) than for short estimates (blue). UTC= unified temporal coding. Adapted
from “Striatal Dynamics Explain Duration Judgments,” by T. S. Gouvêa, T. Monteiro, A. Motiwala, S.
Soares, C. Machens, and J. J. Paton, 2015, eLife, 4, Article e11386, p. 8 (https://doi.org/10.7554/eLife
.11386). CC BY-NC. See the online article for the color version of this figure.

802 DE JONG ET AL.

https://doi.org/10.7554/eLife.11386
https://doi.org/10.7554/eLife.11386
https://doi.org/10.7554/eLife.11386
https://doi.org/10.7554/eLife.11386
https://doi.org/10.7554/eLife.11386
https://doi.org/10.7554/eLife.11386
https://doi.org/10.7554/eLife.11386
https://doi.org/10.7554/eLife.11386


model gap and distractor procedures with two-dimensional LDNs
(which provided the best fit to all modeled data sets). The speed
parameter (θ−1) in our network controls how quickly information is
accumulated but also how quickly it decays. To model how the
stimulus content of the timed signal and the distractors control timing,
we provide the network with a unit vector t that serves as the timed
input. To read out the timing signal, we compute the similarity (i.e.,
dot product) between the vector t and the state of the networkX. This
ensures similar behavior to integrating a one-dimensional step input.
When a gap or distractor is introduced we assume that the similarity
between the timed signal and the distractor can vary between
approximately 0 and 1. For gaps, we assume that the gap has a
similarity of 0 to the timed signal. That is, from the start to the end of
the gap, the network receives no input (i.e., a vector that consists of
zeroes). When a distractor, which is also a D-dimensional vector,
occurs, we provide it as an input to the network instead of the timing
vector t. Therefore, a distractor that is highly similar to the timed
signal only has a small influence on accumulation and decay since the
driving input is highly similar to the timed signal (similarity close to
1). In contrast, a highly dissimilar distractor will have a large
influence on accumulation and decay since the driving input is highly
dissimilar from the timed input (similarity close to 0).
For the fit to C. V. Buhusi (2012), we needed to make some

assumptions about how sound intensity is presented as a vector.
First, we assumed a power law representation of stimulus intensity
(Stevens, 1956) where the exponent was taken from an empirical
study on sound intensity discrimination in rats (Pardo-Vazquez et
al., 2019) and one scaling parameter (k) that we fitted for each
experiment. This scaling parameter may capture differences in
experimental setup that influence themagnitude of distractor effects.8

We then converted stimulus space to a vector representation that can
effectively deal with continuous quantities (Komer et al., 2019). For a
more detailed description, see Appendix C.

Timing With Gaps

A natural consequence of forgetting mechanisms during the gap is
that the timing of gaps has a large influence on timing behavior.
These effects were systematically investigated by Cabeza de Vaca et
al. (1994), who found that depending on the duration, onset, and
offset of the gap, timing behavior varied between stopping and
resetting. When we parametrically vary the duration, onset, and
offset of the gap in our model simulations, the delays are on a
continuum between stopping and resetting and provide a good
quantitative fit to the empirical data (Figure 17, see Experiment 2 in
Cabeza de Vaca et al., 1994). When the onset or offset is fixed but
the duration is varied, we can see that as the duration of the gap
increases, the accumulated time decays more, and the behavior tends
to resemble a full reset. When only the location of gaps is varied, we
can see that for later gaps, the accumulated time decays more
strongly since the accumulated time is larger at gap onset, resulting
in a linear increase in peak shift.

Timing With Distractors

A similar explanation can be given for the effect of distractors on
timing. The similarity of the distractor to the timed signal controls
the magnitude of the delay in responding, such that distractors that
are highly dissimilar to the timed signal produce large delays in

responding (C. V. Buhusi, 2012). In Experiment 1 of C. V. Buhusi
(2012), rats were trained to respond after a visual stimulus has been
on for 30 s while a 40-dB auditory stimulus was continuously
presented in the background. This way, rats learned that the visual
stimulus in addition to the auditory background noise was the signal
to be timed. Then, distractors were introduced by increasing the
loudness of the background noise after 20 s. Distractors that were
similar to the 40-dB background noise (e.g., 55 dB) only had
relatively small effects on behavior. However, as the distractor
intensity increased (i.e., the similarity between the distractor and
the signal decreased), the delay in responding also increased
(Figure 18). Was this delay in responding only due to the absolute
intensity of the distractor, or did the similarity to the timed signal
determine behavior? In Experiment 2, the “similarity hypothesis”
was tested more directly. Rats performed the same peak interval
task, but now the timed signal was a visual signal alongside a 70-dB
white noise signal. In the intertrial intervals, a 40-dB white noise
background was presented. Crucially, distractors could either be
more or less loud than the 70-dB timed signal. Rats delayed their
responses according to the similarity between the distractor and the
70-dB signal, regardless of whether distractors were more or less
loud (Figure 18).

C. V. Buhusi (2012) fitted a resource allocation model to the data.
This model assumes that processing of the distractor and keeping
track of time tap into the same limited pool of working memory
resources. When more resources are spent for distractor processing,
there are fewer resources left for timing. More specifically, C. V.
Buhusi (2012), who assumed that the rate of was proportional to the
similarity between the background noise and the distractor, obtained
a good fit in both experiments. The UTC model makes assumptions
similar to the resource allocation account (see Appendix C for
details) and obtains a reasonable quantitative fit to the data for both
experiments (Figure 18).

The UTC model makes similar assumptions compared to the
resource allocation model by C. V. Buhusi (2012) about the
relationship between distractor similarity and rate of decay. However,
the UTC model proposes a different underlying mechanism. The
resource allocation model assumes that a limited resource is shared
between working memory for time and working memory for other
cognitive processes, implying that these working memory stores are,
at least to some degree, functionally encapsulated (C. V. Buhusi &
Meck, 2009a). In contrast, the UTC model assumes that both
temporal and stimulus information is represented by the same neural
population. Therefore, any effect of distractor similarity is not due to
allocating resources to separate working memory stores, but rather
due to resource competition within a single working memory store.

One may argue that the effects of distractor similarity follow
naturally from our account of vector representations within a single
neural population while a resource allocation account would have to
make additional assumptions about the role of distractor similarity.
Unfortunately, behavioral data alone cannot arbitrate between these
theoretical possibilities. A more informative test may come from
neural recordings. For instance, the UTC model strongly predicts
that individual neurons (e.g., in the prefrontal cortex) are sensitive to
both the timed signal and the distractor. Further, measures of “neural
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8 In the case of C. V. Buhusi (2012), the intensity of background noise in
the intertrial interval varied and may account for differences in the free
scaling parameter k.
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similarity” in sensory areas should directly map onto the “rate of
neural decay” during distractor presentation. These hypotheses
remain to be tested empirically.

The Interdependence of Integration and Decay

So far, the UTC model has been tested for scenarios that have
also been accounted for by existing models. Indeed, Cabeza de
Vaca et al. (1994) and C. V. Buhusi (2012) modeled their results

successfully with memory decay mechanisms (also see, Hopson,
1999). A strong prediction of the UTC model is that the rate of
integration and the rate of decay are directly related through θ. When
the rate of integration is high, the rate of decay is also high. Another
crucial assumption of the model is that different intervals are
timed by adapting θ to the appropriate timescale. Therefore, data
from gap procedures where the target interval is varied could easily
falsify these assumptions: Gaps should have a larger effect when
shorter intervals are timed.
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Figure 17
Timing With Gaps (Cabeza de Vaca et al., 1994): Activity Traces (Left) and Fit to Empirical Data (Right)

Note. Left: when the activity trace crosses the threshold (dashed line), we expect the peak in responding. The gray line represents
baseline peak interval trials without a gap. Right: when duration (top and bottom) and location (middle) are increased, the responses are
increasingly delayed. The dotted line represents peak shifts expected for a “stopping” pattern, and dot–dashed line represents expected
peak shifts for a reset pattern. UTC = unified temporal coding. Adapted from “Internal Clock and Memory Processes in Animal
Timing,” by S. Cabeza de Vaca, B. L. Brown, and N. S. Hemmes, 1994, Journal of Experimental Psychology: Animal Behavior
Processes, 20(2), p. 192 (https://doi.org/10.1037/0097-7403.20.2.184). Copyright 1994 by the American Psychological
Association. See the online article for the color version of this figure.
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This question was directly addressed in an experiment by C. V.
Buhusi and Meck (2009b). Rats were trained on a tri-peak
procedure, where three different response levers were associated
with 10-s, 30-s, and 90-s criteria. When the timed signal was
presented, rats learned to respond after 10 s for the first, after 30 s
for the second, and after 90 s for the third lever. The authors
observed that response times did not correlate between different
levers, suggesting that different internal clocks were running
independently. Gaps of different durations (1 s, 3 s, 10 s, and 30 s)
were introduced 15 s after stimulus onset. Crucially, the delay in
responding depended on the length of the criterion. When the
criterion was short (10 s), it appeared as if rats already reset their
clock for relatively short gap durations. For longer criteria (30 s and
90 s), longer gaps were required for a full reset. The UTC model
provides a good quantitative fit to the data, reproducing the finding
that gaps have larger effects for shorter target times (Figure 19).
Interestingly, C. V. Buhusi and Meck (2009b) fitted the resource

allocation model to the data, using three internal clocks that ran
at the same speed but had different response thresholds. To account
for the findings, they made the additional assumption that each
clock had separate resources that were reallocated during the gap,
where the salience of the gap was proportional to the criterion time
of each individual clock. Note that none of these assumptions is
“essential” to the resource-allocation model. Salience could be
independent of criterion time and the clocks could run at different
speeds without violating any of the core assumptions of the resource
allocation model. In contrast, the validity of the UTC model is
highly constrained by the outcomes of this experiment. If it turned
out that the effect of the gap was constant for different criteria (i.e.,
different speeds), at least one of our core model assumptions would
be completely mistaken.
Additionally, the UTC model suggests an alternative interpreta-

tion of some pharmacological and neurological effects on
performance in gap procedures. For instance, the effect of dopamine
agonists (e.g., methamphetamine) has been traditionally interpreted

as independently increasing internal clock speed and impeding
working memory (and therefore magnifying the effect of gaps).
Conversely, dopamine antagonists (e.g., haloperidol) tend to
decrease clock speed and attenuate the effect of gaps (C. Buhusi,
2003). Our UTC model, on the other hand, suggests that, all else
being equal, any manipulation that increases the rate of integration
will also increase the rate of decay. As a complementary example,
lesions of the hippocampal system typically produce leftward shifts
in responding in peak interval procedures and larger resets in gap
procedures (for a review, see Meck et al., 2013). Traditional
accounts of these effects suggest that hippocampal lesions
independently affect clock speed and working memory for temporal
information (Meck et al., 1984). Conversely, the UTC model
predicts that horizontal shifts in timing functions—whether they are
experimentally induced or reflect accurate timing—are systemati-
cally related to working memory for time.

The UTC also suggests how to model other phenomena in which
“working memory for time” plays a central role. For instance,
systematic over- and underestimation have been found to depend on
retention interval (Spetch & Wilkie, 1983; J. H. Wearden & Ferrara,
1993; J.Wearden et al., 2002, 2007), order of sample, and test stimulus
(Bausenhart et al., 2016). The additional dimensions in the LDN
network allow for maintenance of time intervals relatively accurately
for at least the interval between stimulus onset and the window size.
By assuming that duration is both processed and stored through the
same principles, the UTCmodel may be able to generate a constrained
account of working memory for time. More generally, it has been
proposed that working memory for time taps into the same resources
as other working memory functions, a phenomenon we turn to now.

Neural Normalization Explains Effects of Working
Memory Load

Effects of interruptions already suggest that timing performance
taps into a limited resource. Indeed, the UTC model assumes that
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Figure 18
Timing With Distractors, Fit to C. V. Buhusi (2012) Experiment 1 (Left; 40-dB Signal) and Experiment 2
(Right; 70-dB Signal)

Note. As distractor similarity decreases peak times increase. UTC = unified temporal coding. Adapted from “Time-
Sharing in Rats: Effect of Distracter Intensity and Discriminability,” by C. V. Buhusi, 2012, Journal of Experimental
Psychology: Animal Behavior Processes, 38(1), p. 35 (https://doi.org/10.1037/a0026336). Copyright 2011 by the
Americal Psychological Association.
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both timing and stimulus information are represented by a common
neural population, which allowed us to model the effects of
distractors that were similar to the timing input. More specifically,
the UTC model assumes that both temporal and stimulus
information are represented as vectors (see Figure 4 for the network
architecture). Temporal and stimulus inputs are combined in a
central input population (xinput) by adding the vectors together.
Crucially, adding the vectors results in interference: When the
temporal information is decoded from the network, the added

“noise” from stimulus information will ensure imperfect decoding.
As a consequence, temporal information is integrated at a slower
rate than would result from perfect decoding, explaining why
prospective time estimates decrease in dual-task conditions, similar
to the previously discussed gap and distractor paradigms.

An intuitive way to understand interference in the UTC model is
to consider making a shopping list. In principle, we could have a
shopping list with one entry per item.Whenwe havemany items, we
just make a large list. However, if we only have limited resources
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Figure 19
Model Fit to C. V. Buhusi and Meck (2009b)

Note. Left panels depict activity traces for different gap durations and criteria. For the shortest criterion, the trace initially crosses the
threshold, but as the duration of the gap is increased, the activity decays relatively quickly.When the criterion is longer, short gaps have
less of an effect, since both integration and decay are slower. Right panels show the degree of resetting (as a percentage of a full reset)
for different gap durations (x-axis) and criteria (hues of blue). Gaps have larger effects on shorter criteria. UTC = unified temporal
coding. Adapted from “Relativity Theory and Time Perception: Single or Multiple Clocks?” by C. V. Buhusi and Meck, W. H., 2009,
PLOS ONE, 4(7), Article e6268, p. 3 (https://doi.org/10.1371/journal.pone.0006268). CC BY-NC. See the online article for the color
version of this figure.
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(e.g., a small sheet of article), a trade-off presents itself. We could
write down some items, but once the next item does not fit on the list,
we stop writing. Unfortunately, we would lose the rest of the items.
Alternatively, we could write each item using smaller letters but at
the cost of the legibility of each item. In the case of our network,
interference works like trying to write multiple items (vectors) on a
limited piece of article (neural population).
To illustrate how this interference works, consider a network

that represents the sum of two orthogonal two-dimensional vectors,
s for stimulus and t for time (Figure 20). In the mathematical
implementation of this network, no interference takes place: We
can perfectly decode both s and t from the network that represents
their sum. Note, however, that s+ t is not the unit length: The vector
is not normalized.9 Crucially, when we implement vector addition
with a spiking neural network, a soft form of normalization takes
place due to neural saturation. The tuning curves of our spiking
neurons are such that the firing rate is a decelerating function of
input (Figures 20 and B2). Higher inputs will produce progressively
smaller increments of firing rate. With constant weights for
decoding, a soft form of normalization thus takes place (Figure 20):
Vector s + t is almost reduced to the unit length.10 This, in turn,
results in a loss of information: The dot product between s and s + t
is lower than 1. In other words, when both stimulus and temporal
information are encoded in the same neural population, we lose
some information about both. In effect, the summed inputs to our
neural population share a common representational resource,
where the normalization of the resulting vector puts a capacity limit
on how well the original vectors can be decoded. This normalization
mechanism underlying capacity limitations in working memory is
similar to mechanisms used in other neural models of working
memory (e.g., Bays, 2014; Bouchacourt & Buschman, 2019).
How is interference in our network related to the capacity

limitations typically found in working memory? A consistent
finding in the working memory literature is that memory variability
is a power function of set size (e.g., Bays & Husain, 2008). To
quantify how our network relates to this power function of set size,
we simultaneously presented N orthogonal vectors to a spiking
neural network, where N corresponds to the number of items in a
typical working memory task. We then decoded one of the original
vectors and used decoding accuracy (dot product) as a proxy for the
memory precision measures reported in the literature. Decoding
performance closely approximates a power function of set size,
suggesting that the kind of interference in our network captures
typical set size effects in working memory (Figure 21).
To demonstrate that set size effects in our network also capture

interference between working memory and timing performance, we
modeled an experiment by Polti et al. (2018). Participants performed
an N-back working memory task while also prospectively timing the
duration of each block (30 s, 60 s, or 90 s). During each block, letters
were sequentially presented, and the start and end of the block were
marked by the presentation of red dots. After each block, participants
gave a verbal estimate of the interval between the red dots. In some
blocks, participants timed an empty interval without any letters on the
screen. In the rest of the blocks, working memory load was
parametricallymanipulated by requiring participants to either respond
to a certain letter (“no load”) or respond when the letter N positions
back matched the letter currently on the screen. The authors found
that intervals were increasingly underestimated as working memory
load increased. Crucially, this effect scaled with the timed interval,

suggesting that the rate of temporal accumulation was reduced by
increasing working memory load.

We simulated the N-back experiment by assuming that the model
(d = 6) is presented with a constant temporal vector t and constant
input that reflects, on average, items stored in working memory
over the course of a trial. In empty interval conditions, we only
presented t. In working memory conditions, we simultaneously
presented one vector for the no-load condition andN+ 1 vectors for
the “N-back” conditions. As in the previous example, this produces
interference between items and can possibly account for decreases
in performance with increasing load. We only hand-tuned the
window size (θ= 180 s), which was fixed across conditions, and we
increased the number of neurons in the RNN to 1,000 neurons,
which improved the reliability of the time estimates. The UTC
model captures both an increasing underestimation of time with
higher loads and its dependence on the duration of the interval,
providing a reasonable fit to the empirical data (Figure 22). These
results suggest that the UTC model captures some important
features of timing, working memory, and their interdependence in
dual-tasking conditions.

Attentional Gain Explains Effects of Selective and
Divided Attention on Time Estimation

As discussed previously, attention has multifaceted effects on
time estimation. Selective attention to stimuli increases the
perceived duration of those stimuli (Enns et al., 1999; Mattes &
Ulrich, 1998; Yeshurun & Marom, 2008). Divided attention to time
also increases time estimates (Casini & Macar, 1997; Franssen &
Vandierendonck, 2002; Macar et al., 1994) but interferes with
secondary task performance (for a review, see Brown, 2006). The
UTC model views attention as multiplying (i.e., lengthening)
stimulus vectors by some “attentional” gain. In other words, when
stimuli are attended, the network lengthens those vectors so that they
can be decoded better. This mechanism accounts for the effect of
selective attention. As an example, spatial selective attention
improves stimulus processing of attended stimuli. The UTC model
proposes that attention works selectively by multiplying stimulus
vectors by an attentional gain factor (gs; see Figure 5). When stimuli
need to be ignored, gs< 1, and when they need to be attended, gs> 1.
As a result, selectively attended stimuli have longer vectors, which
allow for better readout of stimulus information. At the same time,
this scaling of the length of the vector is preserved in the temporal
window, resulting in longer time estimates. In the UTC, the size of
this attention effect scales with the duration of the stimuli as has
been found in the literature (Mattes & Ulrich, 1998).

Crucially, the interference between timing and stimulus inputs
(see the previous section) explains the effects of divided attention.
That is, when stimulus inputs are attended, they have longer vectors
and gain a competitive advantage over the timing inputs.
Conversely, when stimulus inputs are ignored, they are shorter,
tilting the advantage to the timing input. An intuitive way to
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9 Increasing the vector size each time a new vector is added is similar to
increasing the size of a shopping list with each new item, for instance, by
stacking sticky notes. The size (i.e., dimensionality) of the shopping list
increases without distortion of its items.

10 Having a normalized vector despite adding more vectors is similar to
having a fixed-length shopping list.
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understand how attentional gain biases the competition between
stimulus and timing inputs is with our limited shopping list. If we
want to put many items on a small and limited piece of article, some
items will become illegible. But if we should definitely not forget
the milk, we could write “milk” in a larger font. This comes at the
cost of other items that have less space left. In our network, attending
to stimulus inputs is like writing items (vectors) in a larger font
(multiplying them) at the cost of other items that have less space left.
To illustrate how attentional competition works in the UTC

model, again consider a network that represents the sum of two
orthogonal two-dimensional vectors. When one of the inputs is

multiplied by an attentional gain factor (gs), the decodability of the
attended input increases, and the decodability of the unattended
input decreases (Figure 23). Therefore, our proposed mechanism
captures the general finding that attention is competitive (Reynolds
& Desimone, 1999). When the attended and unattended inputs are
integrated in our network, it becomes clear that attended stimuli
are judged as longer than unattended stimuli. This attentional
mechanism does not just work on the level of vectors but is also in
line with psychophysiological and neurophysiological work on
attention (e.g., Hillyard et al., 1998; Treue, 2001) and previous
modeling approaches in the NEF (Bobier et al., 2014). For instance,
our simple attentional gain mechanism qualitatively captures
attentional modulations of tuning curves of individual neurons
(e.g., McAdams & Maunsell, 1999): Attention primarily affects the
height of the curve, not its width or position (Treue, 2001).

In Figure 5, we demonstrate a typical trial in a dual-tasking
timing experiment. The UTC model assumes that attending to time
is nothing more than ignoring stimulus inputs (for a similar
perspective, see Phillips, 2012). When stimulus inputs are ignored
(i.e., lower attentional gain), the timing input will suffer from less
competition (see Figure 5). The net result is that timing inputs are
more decodable, which increases time estimates, and stimulus
inputs are less decodable, causing secondary task interference (see
Figure 24). In sum, our attentional gain mechanism accounts for the
bidirectional nature of paying divided attention to time: It both
increases prospective time estimates, but it also disrupts secondary
task performance (Brown, 2006; Brown et al., 2013).

An important issue in the literature is how one can distinguish
timing being disrupted by a lack of attention (“ignoring time”) or a
surplus of memory load (“overloading time”). The UTC model does
not decisively answer this issue, but at least, it demonstrates why
this issue is so difficult. Attentional gain and memory load work
in concert to decrease the decodability of the temporal vector,
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Figure 20
Normalization in Spiking Neural Networks

Note. Left panel: vector addition without normalization. When unit vectors s and t are added, the resulting vector is not the unit length. Both original vectors
can be perfectly decoded from s + t. Middle panel: vector addition with normalization in a population of spiking neurons. The resulting vector is almost the
unit length due to soft normalization by spiking neurons. Right panel: neural saturation drives normalization. The tuning curve shows that firing rate is a
decelerating function of input. Therefore, large values are compressed, leading to soft normalization. See the online article for the color version of this figure.

Figure 21
Working Memory Capacity Limitations

Note. When more items are simultaneously presented to the network, the
decodability of the original vectors decreases approximately as a power
function. See the online article for the color version of this figure.
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shortening its subjective duration. As such, both at the level of
neural representation and behavioral performance, attentional gain
and load do similar things. However, the bidirectional interference
predicted by the UTC can possibly dissociate ignoring time and
overloading time. Ignoring time should decrease the length of the
temporal vector while increasing the length of the stimulus vectors.
Increasing the load, however, should decrease the decodability of all
vectors processed by the network, including the stimulus vectors.
Experimentally, this means that ignoring time should hurt timing
performance, while boosting performance on a concurrent task
(Macar et al., 1994; Zakay, 1998). Increasing the load should be

detrimental to performance on both the timing and concurrent task
(Polti et al., 2018). It would be fruitful to see to what extent these
effects can be teased apart in an experimental paradigm that
combines both manipulations of load and attentional prioritization.

Integrating Remembered Content Explains Effects of
Contextual Changes

As already discussed in the introduction, an interval with more
changes appears to last longer. This is especially the case when
the changes are actively processed (Mcclain, 1983; Predebon, 1996)
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Figure 22
Model Fit to Polti et al. (2018)

Note. Working memory load parametrically decreases subjective duration estimates, an effect that scales with
the timed interval. The model (black dots) captures both features of the empirical data. UTC = unified temporal
coding. Adapted from “The Effect of Attention andWorkingMemory on the Estimation of Elapsed Time,” by I.
Polti, B. Martin, and V. van Wassenhove, 2018, Scientific Reports, 8(1), Article 6690, p. 6 (https://doi.org/10
.1038/s41598-018-25119-y). CC BY 4.0.

Figure 23
Attentional Gain

Note. Left panel: Attentional gain (gs) on the left vector is varied. The decodability of the original attended vector increases while decodability
of the unattended vector decreases (middle panel). Right panel: normalized tuning curve of example neuron. Attentional gain primarily
influences the height of the tuning curve, not its width. See the online article for the color version of this figure.
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or, in the case of retrospective timing, segmented (Poynter, 1983;
Zakay et al., 1994). So far, the UTC model assumes that time
estimates scale with how much change is encoded in a rolling
temporal window whether those changes consist of a constant
timing input or a varying stimulus input. This same set of
assumptions is also able to account for the finding that intervals with
more changes are perceived as lasting longer. When more changes
are encoded by the rolling temporal window, these changes
(literally) add up to a longer time estimate of the interval that spans
those changes. This is also true for retrospective time estimates
when no timing input is present. When a retrospective time estimate
is required at the end of an interval, the UTC model adds up the
amount of stimulus changes encoded inside the temporal window to
generate an estimate (see Equation 2).
What happens when we vary the number of stimuli presented to

our network? We assessed this question by varying the number of
stimuli without varying the total presentation time. We simulated
the effect of the number of stimuli (N) by presenting the network
with one to 10 inputs in 1 s. The duration of the inputs was scaled
such that the total duration of the inputs was always 1 s. Note that
this way of presenting inputs resembles “segmenting” the input.
We then read out the network state at 1.2 s and inferred a time
estimate based on Equation 2. We also varied the number of LDN
dimensions (d), which controls how precisely the inputs can be
represented within the temporal window. Time estimates were a
decelerating function of N (Figure 25). This pattern is consistent
with the finding that retrospective time estimates increase with the
number of perceived events (Block & Reed, 1978; Fountas et al.,
2022; Lositsky et al., 2016; Mcclain, 1983; Predebon, 1996).
Furthermore, the slope of this function crucially depends on the
number of LDN dimensions since more changes can be encoded by
additional dimensions. What happens when incoming stimuli are
more or less attended to? We can clearly see that for larger gs, the

signal strength increases; therefore, retrospective time estimates
increase (Figures 5 and 26). This behavior is broadly consistent
with the finding that as stimulus inputs are more attended,
retrospective time estimates increase (Block et al., 2010; Fountas
et al., 2022).

Unified Temporal Coding Accounts for Differences
Between Prospective and Retrospective Timing

In their seminal meta-analysis, Block et al. (2010) demonstrated
that prospective time estimates decrease with increasing cognitive
load while retrospective estimates increase with increasing cognitive
load. This interaction effect has been taken as an evidence
that prospective and retrospective timing are different kinds of
processes. In line with this reasoning, previous models have
assumed that cognitive load affects attention (prospective timing)
and memory (retrospective timing) separately (Fountas et al.,
2022; French et al., 2014). That is, when cognitive load increases,
attention to time is hindered, decreasing prospective estimates.
Independently, increased cognitive load produces more remembered
changes in memory, lengthening retrospective estimates.

The attentional mechanisms of the UTC model, however, can
simultaneously explain how cognitive loadmodulates prospective and
retrospective estimates. The UTC model assumes that attending to
time is nothing more than ignoring stimulus inputs. In cognitively
demanding situations, more attention needs to be paid to incoming
stimuli, resulting in stronger competition with the “timing input.” The
net result is that increasing cognitive load decreases prospective
estimates (Figure 26). The effect of cognitive load on retrospective
estimates is explained by the exact same mechanism. Cognitively
demanding tasks require more attention to incoming stimuli,
effectively boosting their representational precision (see Figure 5),
increasing retrospective estimates that are based on the stimulus inputs
(Figure 26).11 Notably, the UTC model captures this interaction by
only varying one parameter: attention to incoming stimuli, gs.

12

Therefore, the UTC model makes constrained predictions regarding
the relationship between cognitive load, attention and time estimates.

It should be noted that there are some possible boundary
conditions for observing the interaction effect of cognitive load
on time estimation in within-participant paradigms. For instance,
Walker et al. (2022) found no evidence that cognitive load
modulates prospective and retrospective time estimates of 8-min and
58-min intervals. This suggests a possible upper bound on the timing
processes that are engaged for different time intervals. A recent
study by Nicolaï et al. (2024) did not find a significant interaction
between working memory load and duration judgment type
(prospective vs. retrospective), using an online adaptation of the
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Figure 24
Attention Incoming Stimuli (gs)

Note. When more attention is paid to time (low gs), prospective estimates
increase, which interferes with stimulus decodability. See the online article
for the color version of this figure.

11 To match the scale of retrospective time estimates to the empirical data
in Block et al. (2010), we only varied the intercept (i.e., time estimate if no
changes are encoded) and slope (i.e., how much additional change increases
estimates).

12 Another explanation that is consistent with the UTC model is that as
cognitive load increases, working memory load also increases. In that case,
prospective estimates would decrease due to increasing working memory
load. Retrospective estimates would increase due to more items being
encoded inside the temporal window. It is important to note, however, that
whichever explanation turns out to be viable, it is only a single factor
(attention or working memory load) that produces the “cognitive load” effect
in the UTC model.
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paradigm by Polti et al. (2018). In both studies, it is not clear how
much evidence there was for the absence of an interaction effect, but
future studies should attempt to replicate this interaction effect in
controlled experimental settings.

In sum, what does the UTC model suggest about the distinction
between prospective and retrospective timing and about whether it
is a difference of degree or a difference of kind? We modeled
prospective and retrospective timing by only assuming that in
prospective contexts, an additional timing input is provided to the
network, which only differs in representational content from the
fluctuating, variable stimulus inputs. This can be viewed as a
qualitative difference between prospective and retrospective timing,
but the similarities are more salient. The model suggests that both
forms of timing rely on the same representational and computational
principles. Both temporal and stimulus information are represented
as high-dimensional vectors, and both types of information are
encoded in a rolling temporal window, where the amount of change
informs time estimates. In the case of retrospective timing, these
changes reflect changes in stimulus content, whereas in the case of
prospective timing, they reflect the integration of a constant input.
And not despite, but precisely because of these similarities, does the
UTC model explain why prospective and retrospective timing are
differentially influenced by cognitive load. If temporal and stimulus
information were represented separately, the UTC model would not
be able to capture the competition between temporal and stimulus
information. Further, supporting the notion that both types of timing
rely on the same principles, the model suggests that cognitive load
may only affect a single underlying process: attentional gain.

General Discussion

Here, we have pursued one possible answer to the question of
how the brain represents and updates temporal information,
proposing the UTC model. Instead of studying the behavior of
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Figure 25
Effect of the Number of Stimuli on Change Encoded in the Network

Note. When more stimuli are presented to the network in the same total
time, the amount of change represented by the network increases. For low-
dimensional networks, there is little effect of the number of stimuli since
multiple stimuli cannot be encoded by these networks. Change was
normalized within each network across different N. See the online article for
the color version of this figure.

Figure 26
The UTC Reproduces the Interaction Effect of Cognitive Load (Block et al., 2010)

Note. On the y-axis, the duration judgement ratio
�
testimated
ttarget

�
, where one indicates perfectly accurate timing. For

Block et al.’s (2010) meta-analysis, cognitive load is plotted on the x-axis. For the UTC model, attention to
stimuli (gs) is plotted on the x-axis and assumed to scale with the cognitive load. Prospective estimates decrease
with more attention to stimuli due to workingmemory interference whereas retrospective estimates increase with
more attention to stimuli due to encoding of more change. UTC= unified temporal coding. Adapted from “How
Cognitive Load Affects Duration Judgments: AMeta-Analytic Review,” by R. A. Block, P. A. Hancock, and D.
Zakay, 2010, Acta Psychologica, 134(3), p. 336 (https://doi.org/10.1016/j.actpsy.2010.03.006). Copyright
2010 by the Elsevier. Adapted with permission.
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neural networks that were trained extensively on timing tasks, we
use an RNN, the LDN, whose connections are optimized from first
principles to represent a flexible rolling window of input history.
The LDN continually updates coefficients on temporal basis
functions that together form the ever-changing representation of
input history. The length of the rolling window, that is, how quickly
inputs are encoded and forgotten, is controlled by the speed of this
updating process. The UTC model puts forward clear and testable
neural principles underlying temporal representation. Indeed, it can
account for some fundamental behavioral and neural phenomena,
such as (violations of) the scalar property, temporal scaling of neural
responses, and the effects of distracting events on timing.
The UTC model also scales naturally to more high-dimensional

inputs and complex tasks. We make the crucial assumption that both
temporal and stimulus information are represented in the same way
by the same neural population. We show that fundamental limits in
simultaneously representing multiple temporal and stimulus inputs
accounts for both limits in working memory capacity and time
perception. Further, we implemented an attentional gain mechanism
that not only accounts for attentional effects on prospective time
estimation but also retrospective time estimation, thereby providing
a novel unification of these seemingly distinct forms of timing.

Comparison With Previous Models

In his famous Principles of Psychology (1890), William James
closed his chapter on time perception with the question “To what
cerebral process is the sense of time due?” The internal clock
approach has long been the most formalized approach to answering
this question, despite its focus on functional over more “cerebral”
explanations. In recent decades, a host of alternatives to the internal
clock have been proposed, such as oscillator and memory models,
many of which are explicitly based on neural mechanisms. The most
recent example of this increased emphasis on biological plausibility
are RNN models, providing a powerful lens through which to view
timing and time perception. Interval timing is viewed as trajectories
through complex neural spaces, quite unlike the monotonic and one-
dimensional accumulation of ticks assumed by internal clock
models. As a result of their biological plausibility and complexity,
neural network models have provided strong accounts of neural
phenomena and more complex timing phenomena like pattern timing
(e.g., Hardy & Buonomano, 2016; Hardy et al., 2018). Despite these
clear benefits over more traditional approaches, the representational
and computational principles underlying the performance of neural
network models are often obscure. The ticks of a clock clearly
represent the elapsed time since the onset—and the expected time
until offset—of a relevant event. The same basic temporal information
is often present in trained neural networks; however, the principles
behind representing and continuously updating temporal information
are ill-defined. Careful study of these artificial neural networks has
proven to be productive (e.g., Bi & Zhou, 2020); however, their
underlying principles are often inferred in hindsight rather than
constructed from first principles.
How does the UTC model relate to the taxonomy of timing

models put forward in the introduction? First, the UTC model
inherits prominent features of PA models, memory models, and
RNN models. In prospective timing contexts, a constant input is
presented to the network, similarly to how a pacemaker provides a
constant stream of ticks to the accumulator. The first dimension,

representing the mean of the input history, behaves like a (leaky)
integrator, where the speed of integration is controlled by the
recurrent gain, similarly to several PA models (Simen et al., 2013).
The UTC model also handles the scalar property, one-shot learning,
and adaptive neural “speed” in similar ways. One major difference,
however, is how time and stimulus information is represented.

With regard to stimulus representation, the UTC model also
shows clear similarities with memory models, especially those that
represent stimulus history on a continuous timeline, such as the
TILTmodel (M.W. Howard et al., 2015; Shankar &Howard, 2012).
The conjunctive representation of what and when is central to the
ability of both models to account for behavioral and neural data, and
as such, they embody common principles. The main difference
between UTC and TILT is that the timeline of UTC is bounded
and flexible whereas the timeline of TILT is (theoretically) infinite
and fixed. One notable exception is Y. Liu et al. (2019), who
implemented TILT in a spiking neural network. The authors
demonstrated that the timeline can be stretched or compressed by
changing the gain of the tuning curves of individual neurons. As
such, the principle of changing the dynamics of the network by
scaling the recurrent gain is not new. However, the UTCmodel does
offer a novel perspective on what such a recurrent gain modulation
implies for representing a rolling window of history: It exactly scales
window length (θ). By extension, scaling the recurrent gain of the
network has consequences for the filtering properties of the UTC
model but also the speed of encoding and forgetting in working
memory.

The UTC model is also an RNN; therefore, it has the same basic
structure. However, it embodies clear representational and computa-
tional principles that are derived from optimally representing a rolling
window of the past.

As we have shown, the principles embodied by the UTC model
can account for complex neural signatures and their adaptive
temporal scaling. Previous work has also demonstrated that this
rolling window can model time cell data well (Voelker & Eliasmith,
2018). However, it is also clear that some distinct features of neural
data are not captured by the UTC model. For instance, stimulus-
selective cells have been found in the entorhinal cortex that exhibit a
continuous spectrum of time constants (Bright et al., 2020; Tsao
et al., 2018). These cells have been predicted by the TILT model
several years before they were found, and as such, the TILT model
likely has an edge over the UTC model in explaining the neural
substrates of long-term retrospective timing. On the other hand, we
believe that some complex features of the neural data in Wang et al.
(2018), which are well captured by the UTC model, are not
anticipated by the TILT model. Future modeling work should
attempt at a formal comparison between how well these models
capture neural data in different brain areas, given different task
requirements and on different timescales.

Another prominent dimension along which models of timing are
categorized is the “dedicated versus intrinsic” axis (Ivry & Schlerf,
2008). Dedicated models propose that timing is implemented by a
single, specialized, modality-independent neural mechanism located
in a specific network of brain areas, comprising the basal ganglia,
thalamus, cerebellum, and supplementary motor area (Merchant et
al., 2013). In contrast, intrinsic models argue that any neural circuit
with physiological or population dynamics can tell time, suggesting
that multiple mechanisms underlie timing (Buonomano & Laje,
2010; Motanis et al., 2018). Hence, depending on the input modality
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or task, different neural structures will be involved in timekeeping.
While some noteworthy attempts at integrating these views have been
put forward (Merchant et al., 2013), these are mainly conceptual
models that delineate which mechanisms, dedicated or intrinsic,
obtain for certain timescales, modalities, or task requirements. Hence,
these proposals lack clear functional explanations as to why intrinsic
or dedicated timing mechanisms may be employed in different
situations. In contrast, the UTC model suggests a possible functional
account of context-dependent temporal processing. Instead of
assuming that certain neural mechanisms or brain areas are inherently
“intrinsic” or “dedicated,” the UTC model proposes that intrinsic
networks may be controlled—by tightly regulating inputs, dynamics,
and outputs so as to tell time in a dedicated way. Neural networks that
already generate complex temporal representations may be “re-
cruited” for interval timing by providing a constant input to the
network, controlling the speed of the neural dynamics, and tuning its
readout to match task demands. This mechanism of recruiting neural
circuits for timekeeping is clear from the way UTC deals with
prospective and retrospective timing: the network “intrinsically”13

encodes temporal information in retrospective timing tasks; however,
these same dynamics are adapted to perform prospective timing tasks.
The UTC model also provides a different perspective on

prospective and retrospective timing compared to existing models
(Fountas et al., 2022; French et al., 2014). Both GAMIT and the
predictive processing model assume that the cognitive load affects
two independent parameters: attention for prospective timing and
memory for retrospective timing. Conversely, the UTC model
assumes that cognitive load only affects a single parameter: attention
to stimuli. Arguably, a separation of attention and memory would
complicate explanations of other phenomena. For instance, neither
GAMIT nor the predictive processing model explains why paying
attention to timing interferes with secondary task performance.
The UTC model suggests that stimulus and timing information
compete within the same neural network, resulting in bidirectional
interference.
The UTC provides a different explanation for the effect of

cognitive load and explains some phenomena that may be beyond
the scope of existing models. How could the UTC model still be
tested against alternatives like the predictive processing model? A
major contrasting prediction relates to attention, stimulus encoding,
and timing. The predictive processing model assumes that as more
attention is paid to timing, more stimuli are encoded, resulting in
longer time estimates. Conversely, the UTC model assumes that as
more attention is paid to timing, stimuli are ignored, resulting in
longer time estimates. Clearly, the predictive processing model and
the UTC model make qualitatively different predictions regarding
stimulus processing, which would be worthwhile to test
empirically.

Future Directions

The UTCmodel attempts to integrate phenomena across different
forms of timing (prospective–retrospective) and levels of explana-
tion (neurophysiological–cognitive). Here, we will briefly outline
how the UTC model may be ideally situated to explain more
complex forms of timing, implement alternative learning and
adaptation rules, and extend to other phenomena in “temporal
cognition.”

Pattern Timing

When studying “interval” timing, the temporal complexity of
our surroundings and actions is easily overlooked. Humans and
nonhuman animals are remarkably skilled at recognizing and
producing complex temporal patterns (Hardy & Buonomano, 2016).
For instance, in speech, a wealth of information is contained, not in
the isolated timings of vowels, words or sentences, but rather their
embedding in a complex, hierarchical, and temporal structure. This
poses a fundamental issue for models of interval timing: Is complex
timing somehow constructed from isolated intervals, or is interval
timing derived from more complex temporal representations? The
UTC is clearly consistent with the latter view: Interval timing is
accomplished by integrating a constant signal, and time estimates
are based primarily on the first dimension (i.e., the mean of the
temporal window), effectively ignoring more complex temporal
patterns that are encoded by the network. Nevertheless, the LDN is
optimized to time these more complex patterns and embodies clear
principles of temporal representation. For instance, the dimension-
ality and window size of the LDN jointly control the upper bound on
the frequency content that can be represented (Voelker, 2019;
Voelker & Eliasmith, 2018). As more dimensions are added, higher
frequencies in the input history can be approximated since these
higher dimensions themselves contain higher frequencies (see the
temporal basis function in Figure 2). Similarly, as window size is
decreased, higher frequencies can be represented, since the entire
temporal basis function is compressed in time. Whether and how
these principles apply to flexible pattern timing remain an open
question, but they are clearly consistent with the basic observation
that humans can both perceive and produce complex temporal
patterns at a range of timescales (Hardy & Buonomano, 2016). An
exciting avenue of future research is to test whether the UTC model
provides an intuitive account of an effect that combines the temporal
complexity and flexibility of timing, the “Weber-speed” effect:
Intervals are produced more precisely when they are embedded in
faster temporal motor patterns (Hardy et al., 2018; Slayton et al.,
2020). Interestingly, Hardy et al. (2018) have demonstrated that the
effect does not result from subdividing the interval. Instead, true
warping of the neural dynamics, which is a central tenet of UTC,
seemed to best account for the data.

Learning and Adaptation

The UTC model implements well-established learning rules
(Simen et al., 2013) for adapting its window size in prospective
timing tasks, matching both observed learning rates and adaptation
of neural dynamics. Nevertheless, there are still some open
questions about temporal learning that the UTC model has not
addressed yet. For instance, how does the network learn to represent
coefficients on a temporal basis function in the first place? And how
does the network learn the appropriate window size based on
reinforcements or, alternatively, adapt window size based on the
temporal statistics of its input? Here, we will discuss how the UTC
may be able to address these issues.
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13 Our network is optimized to represent a rolling window of input history;
hence, it is less intrinsic than other theoretical proposals (e.g., Motanis et al.,
2018). Nevertheless, in retrospective conditions, the network’s mechanisms
are clearly more intrinsic than in prospective conditions.

NEUROCOMPUTATIONAL MODEL OF TIMING 813



The problem of how the recurrent dynamics of our network are
learned in the first place goes to the heart of unsupervised learning.
How can a neural network, without any teaching signal, learn to
represent the structure of its input? In the case of RNN models of
timing, several learning algorithms have been proposed that can
learn to represent the temporal structure of its inputs (Laje &
Buonomano, 2013; J. K. Liu & Buonomano, 2009). It would be
interesting to see under which conditions these algorithms generate
neural networks that are structurally and functionally similar to the
one used by the UTC model (Voelker & Eliasmith, 2018).
As we have demonstrated, learning appropriate timescales for

timing tasks appears more tractable. Similarly to the UTC, many of
the learning rules employed in interval timing models are designed
to speed up or slow down the behavioral or neural dynamics as to
produce shorter or longer intervals, respectively (Gavornik et al.,
2009; Killeen & Fetterman, 1988; Luzardo et al., 2013; Mikhael &
Gershman, 2019; V. M. Namboodiri & Shuler, 2016; Simen et al.,
2011b; Wang et al., 2020). One-shot learning rules capture the rate
of temporal learning well; however, it is not clear how they relate to
the underlying neurophysiology. While the role of dopamine in
interval timing is multifaceted (Fung et al., 2021), it has a clear role
in temporal learning. Howmight the UTCmodel capture this central
role of dopamine? The most straightforward solution is to include
reinforcement learning for adapting the timescale of our network
(Gershman et al., 2014; Mikhael & Gershman, 2019; Petter et al.,
2018). For instance, a learning rule recently proposed by Mikhael
and Gershman (2019; and empirically supported by Jakob et al.,
2022) might have an intuitive mapping to components in our
network.14 This simple algorithm learns to predict when rewards
will occur after a cue. When rewards are received earlier than
expected, the “pacemaker rate” increases, ensuring that in the future,
rewards are expected to occur earlier (and vice versa for rewards that
occur later than expected). This learning rule operates on principles
similar to the one-shot learning rules (although they may be slower).
Additionally, it captures how pharmacological (Coull et al., 2011)
and optogenetic (C. D. Howard et al., 2017; Soares et al., 2016; Toda
et al., 2017) modulation of dopaminergic neurons affect interval
timing and why they sometimes seem to do so in opposite ways. As
such, this learning rule would further allow the UTC model to
generate constrained predictions about dopaminergic effects on
timing (Mikhael & Gershman, 2019), especially as they relate to gap
and distractor procedures (C. Buhusi, 2003). It would also allow the
UTC model to learn when rewards will occur from complex
temporal sequences by mapping the coefficients on its temporal
basis function to expected rewards, going beyond simple intervals.
In many cases, the relevant timescale is not clearly denoted by

rewards or punishments, rendering reinforcement learning mechan-
isms ineffective. For instance, modulations in speaking rate are
typically not accompanied by changes in reward rate. Nevertheless,
humans show excellent performance on classifying time-warped
speech, possibly through the temporal scaling of cortical responses
(Lerner et al., 2014; for a different perspective, see Vagharchakian et
al., 2012). How could our network adapt the length of its temporal
window based on the rate of change in the input? Previous models
have broadly proposed either neurophysiological (Gütig &
Sompolinsky, 2009) or network (Goudar & Buonomano, 2018)
mechanisms. It would be worthwhile to investigate whether these
mechanisms can automatically adapt window size in the
UTC model.

Temporal Cognition

A central issue highlighted by the earlier discussed “dedicated
versus intrinsic” axis is the nature of temporal cognition. On the one
hand, it is clear that subjective time is not completely abstracted
from “nontemporal” properties of an event. A host of stimulus
features shape time perception, such as contrast, loudness, size,
motion, numerosity, and several more (Matthews & Meck, 2016).
Similarly, directing more attention to stimuli dilates their apparent
duration. These effects can be unified by the processing principle, as
proposed by Matthews and Meck (2016): “subjective duration of a
stimulus is positively related to the strength of its perceptual
representation” (p. 869). A mapping between “perceptual strength”
and the UTC can be readily made: Perceptual strength scales with
vector magnitude. When a stimulus has high perceptual strength,
through low-level stimulus features or cognitive factors, the longer
its vector, and therefore, the longer it appears to last.

The processing principle is already embodied by UTC to some
extent. For instance, the UTC model assumes that attentional gain
scales the vector magnitude of stimuli, increasing both their
perceptual strength and their apparent duration. Meanwhile, the
effects of attention on perceptual strength are also reflected on a
neural level, where tuning curve height scales with perceptual
strength. The UTC model also intuitively captures the effect of
working memory load, which decreases vector magnitude and,
therefore, their perceptual strength and apparent duration. Reduced
neural responses with increasing working memory load have been
demonstrated in monkey electrophysiology (Buschman et al., 2011).
It seems that the UTCmodel may be able to account for the effects of
perceptual strength on subjective time through the intuitive mapping
between perceptual strength and vector magnitude.

Future modeling work needs to demonstrate the feasibility of
fully mapping the UTC to the processing principle, but here
we provide a simple example. Matthews et al. (2011) found that
stimulus contrast increases the judged stimulus duration. For
instance, when a bright stimulus is presented against a dark
background, it is perceived to last longer than a dim stimulus.
Crucially, this effect scales with the duration of the stimulus. When
we assume that the magnitude of the stimulus input scales with its
contrast (dim = 0.8, bright = 0.9), the UTC model (d = 3) is able
to capture overestimation of high-contrast inputs, an effect that
scales with stimulus duration (see Figure 27).

An exciting avenue of future research would be to incorporate a
realistic model of perceptual processing in the input stage of UTC,
so it would be able to account for more complex stimulus-related
effects. For instance, the UTC model has so far assumed some form
of self-sustained activity underlying the perception of empty
intervals, practically equating the perception of filled and empty
intervals. However, a consistent finding in the literature is that filled
intervals are perceived as lasting longer than empty intervals (J. H.
Wearden & Ogden, 2021). More realistic assumptions about the
perceptual processes could elucidate these types of perceptual–
temporal illusions. Such a model would, in turn, make testable
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14 This learning rule should have access to the reward prediction error (for
implementation in NEF, see Rasmussen et al., 2017), a subjective estimate of
time (the decoded time estimates in our network), pacemaker rate (θ−1), and
the temporal derivative of the estimated value (for an overview of temporal
differentiation methods implemented in the NEF, see Tripp & Eliasmith,
2010).
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predictions about the neural dynamics underlying timing perfor-
mance (see Toso et al., 2021).
Another salient feature of temporal cognition is that cognitive

processes do not only evolve through time. They are also sensitive
to temporal contingencies in our environment and actively shape
the temporal structure of our behavior. Hence, a central question is
whether temporal representations are generated by a central
mechanism from which cognitive processes inherit their temporal
sensitivity and through which they exert influence on the timing of
behavior or whether temporal representations are a built-in feature of
almost any cognitive process (Salet et al., 2022). Our “recruitment”
hypothesis proposes that, while temporal representations are likely a
built-in feature of many cognitive processes, they are nevertheless
systematically controlled so that their inputs, outputs, and dynamics
track the temporal contingencies at hand. This hypothesis is relevant
to many cognitive processes, such as attention (Nobre & van Ede,
2017), episodic memory (Eichenbaum, 2014), and working memory
(van Ede et al., 2017). Indeed, recent findings suggest that humans
can speed up the rate at which they encode information in visual
workingmemory when they expect little time to do so (de Jong et al.,
2023). Here, we briefly discuss decision making, a field in which
several models have been developed that deal with adaptive
timescales. We argue that even in the absence of explicit time
estimation, the speed of evidence accumulation and forgetting are
adaptively controlled so as to track temporal contingencies in the
environment, suggesting a promising avenue of future research for
our UTC model.
When making decisions, we are often faced with noisy and

uncertain situations, requiring the integration of multiple samples of
evidence before committing to a choice. The most dominant
decision-making models assume that evidence is accumulated
without any forgetting over time, that is, perfect integration.
However, most support for these “perfect integration” models

comes from static decision-making paradigms: The ideal starting
point of evidence accumulation is known beforehand (i.e., at the
start of a signal), and the underlying source of the signal remains
constant throughout the trial. Indeed, perfect integration is an
optimal strategy under such conditions (Bogacz et al., 2006). But
when the environment is volatile, the underlying source of the signal
may change frequently, and as a result, previous evidence may no
longer be relevant. For instance, when deciding on the location of a
potentially dangerous animal on the basis of sound, the animal may
already have moved significantly, rendering previous information
obsolete. Glaze et al. (2015) showed that an optimal observer forgets
previous evidence more quickly as the environment changes more
quickly (i.e., becomes more volatile). These principles are consistent
with decision-making behavior in humans (Glaze et al., 2015;
Ossmy et al., 2013) and rats (Piet et al., 2018). For instance, rats are
able to optimally adapt their rate of evidence integration, tracking
the volatility of the environment. When rats were moved from a
highly volatile environment into a stable environment, their rate of
forgetting increased; when subsequently placed back to a stable
environment, their rate of forgetting decreased (Piet et al., 2018).
Adaptive timescales also apply to extrapolating from the immediate
past to the near future. Baumgarten et al. (2021) found that humans
were able to accurately predict upcoming tones from sequences with
naturalistic temporal patterns over a four-fold change in input rate.
These adaptive predictions were supported by neural mechanisms,
as measured by magnetoencephalography, that integrated sensory
evidence at flexible rates, ensuring that roughly a constant number of
samples were integrated regardless of timescale. In sum, adaptive
control of integration and forgetting is a central feature of decision
making, and as such, its mapping to a flexible window size in the
UTC seems a promising avenue for future research.

Extending Time in Retrospect

The UTC model explains how retrospective duration judgments
are made from integrating remembered stimulus content and how
the strength and number of remembered stimuli affect these
judgments. However, the retrospective sense of time is arguably
richer than that. For instance, humans can accurately estimate how
recently something happened. The accuracy and speed of recency
judgments have been explained in some detail by the TILT model
(Tiganj et al., 2022) by assuming that stimuli are stored on a
logarithmically compressed internal timeline. The UTC model also
stores stimuli on an internal timeline, and as can be seen from
Figure 3, the recency and relative order of stimuli can be readily
decoded from the window. As such, the basic ingredients for
recency judgements are present in the UTC model. However, we
need to make additional assumptions on exactly how these temporal
are read out. For instance, empirical evidence suggests backward
(Tiganj et al., 2022) or forward scanning (Chan et al., 2009) through
an internal timeline. Similarly, the UTC model represents the serial
order of stimuli and, therefore, has the basic capacity to tell which
came first. Future modeling work should focus on how the UTC
model may explain recency and order judgments, which are an
important component of retrospective timing.

The UTC model offers a unified account of prospective and
retrospective timing by assuming both result from the readout of
a common memory network. Should we expect the UTC model
to also account for phenomena in the wider memory literature?
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Figure 27
Linking the Unified Temporal Coding (UTC) Model to Effects of
Stimulus Intensity

Note. In Matthews et al. (2011), stimuli (bright or dark) were presented
against a dark background, and participants had to verbally judge their
duration. Higher contrast (bright) stimuli expanded subjective time, and its
effect increased over stimulus duration. When we assume that vector
magnitude scales with stimulus contrast, the UTC model is able to capture
these effects.
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We believe this question remains to be addressed. However, at a
minimum, the UTC tries to explain some rudimentary phenomena in
working memory. For instance, why it has capacity limitations, how
information is encoded and forgotten, and how that is supported by
neural dynamics. For instance, when humans expect to have little
time for encoding information, they are able to increase their
encoding speed (de Jong et al., 2023). The UTC model can explain
these adaptive speedups intuitively by appealing to adaptations in
recurrent gain, which scales the speed of encoding in the temporal
window. Given its fit to the working memory phenomena
considered in this article and its potential to explain the dynamics
of working memory encoding and forgetting, we believe that the
UTC model is at least promising as a neural model of working
memory.
Whether the specific implementation of memory in the UTC

model (i.e., the LDN network) would also extend to long-term
memory remains to be seen. In principle, there is no limit to the size
of the temporal window, and multiple LDN networks can be stacked
to substantially extend it (Voelker, 2019). Also, as we have shown,
the window size can be learned very quickly and could therefore also
adapt to how long information needs to be stored. However, it seems
plausible that durable long-term memories utilize a more durable
format than ongoing neural activity patterns. Furthermore, long-
term memory for when events happened likely depends on a
multitude of nontemporal factors from which temporal information
can be reconstructed. Clearly, such types of temporal judgements
would benefit from integration with long-term associative and
semantic memory as has been proposed by the predictive processing
model (Fountas et al., 2022).
However, even if the memory system of the UTC model would

not extend to these longer timescales, it could still inform future
theoretical approaches to retrospective timing in long-term memory.
The most important principle embodied by the UTC is that, at a
crucial stage in processing, prospective timing information is coded
conjunctively with stimulus information, and as a result of limited
representational resources, they compete. As a consequence, it
makes clear predictions (and model prescriptions) for how attention,
memory load, and concurrent prospective timing influence the
strength of memories encoded in working memory. To the extent
that strength in working memory determines long-term memory
performance, UTC’s principles of conjunctive, competitive coding
could extend to duration information in long-term memory. This
seems like a promising prospect, especially given the proposed
mapping of the UTC to the processing principle (see the previous
section). In fact, long-termmemory strength is modulated by several
factors that influence working memory strength. For instance,
attention to information in working memory affects later long-term
memory performance (Jeanneret et al., 2023), and items encoded at
higher set sizes decrease long-term memory strength (Forsberg et
al., 2021). As such, the conjunctive, competitive coding of the UTC
would predict that attended items, and items that suffered less from
competition of other items, would be remembered as having lasted
longer. Conversely, to the extent that concurrent prospective timing
impairs working memory strength, they should also impair long-
term memory performance and, therefore, their remembered
duration. These predictions remain to be tested, but it demonstrates
that the UTC can generate novel predictions based on some of its
core principles.

Concluding Remarks

Here, we have proposed a neurocomputational model of timing,
the UTC model, that aims to unify prospective and retrospective
timing through theoretically well-grounded representational and
computational principles. The UTC model explains conformity and
violations of the scalar property, neural population dynamics
underlying time perception and time production, timing behavior
under normal and distracting conditions, common capacity limits in
timing and workingmemory, and how timing depends on attentional
modulations. Strikingly, by assuming that prospective and retrospec-
tive timing rely on the same principles and are implemented in the
same neural circuit, our attentional gain mechanism can resolve the
apparently paradoxical effect of cognitive load on prospective and
retrospective timing. Further, the UTC model suggests that explicit
interval timing does not depend on a dedicated mechanism, nor is it
a simple by-product of intrinsic neural dynamics. Instead, adaptive
interval timing behavior is accomplished by appropriately controlling
the inputs, dynamics, and outputs of neural circuits that are tuned to
represent a flexible window of their input history. In sum, the UTC
model embodies clear representational and computational principles,
providing an initial attempt to unify time in passing and time in
retrospect.
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Appendix A

Legendre Delay Network

In the design of the Legendre Delay Network (LDN), we will
argue from first principles: What would be the optimal algorithm for
the problem of remembering the past?A1 First, let us specify what it
means to remember a series of events as the ability to reproduce
those events without distortion. The “optimal” algorithm will be one
that perfectly reproduces the past at an arbitrary time in the future
without distortions. We also note that in the ideal case, this is true
for continuous time: We cannot know in advance what moments
in time are important or not, so we should apply our algorithm to
every moment in time. However, storing all information at every
continuous moment in time would require infinite resources, not
just in a simulation of this algorithm but in neural implementations.
As this is impossible to attain, our algorithm needs to satisfy the
constraint of finite resources.
A quantification of this approach is shown in Figures A1 and A2.

The continuous input events are u(t) (see Figure A1). A perfect
reproduction of those events at some later timewould be x(t)= u(t− θ),
where θ is the length of time between now and that “later time.”
Essentially, we are storing the signal for the period θ. We can think of
the system as “delaying” the input by θ, providing an exact copy
shifted by θ (see Figure A1). Notably, x(t) would need to have infinite
dimensions if it were to delay a single continuous-time input,
regardless of how long we want to delay that input (see Figure A2).
The LDN is a system that optimally solves this challenge given

finite resources (Voelker et al., 2019). Specifically, it has provably
the smallest possible error given a specific number of resources

compared to a perfect delay. These resources can be thought of as
neurons in a neural network or, in the context of the LDN, as
dimensions in a function space. Specifically, instead of implement-
ing a perfect delay with an infinite storage capacity (x(t) = u(t − θ)),
we approximate this delay using a finite function space P that is
defined over the interval (t, t − θ):

Xd−1
i=0

Pi

�
θ0

θ

�
xi tÞð ≈ u t − θÞð , (A1)

where d is the highest dimension in the function space (i.e., the order
of our approximation or the number of resources available), θ is the
length of the delay, θ′ are the values between 0 and θ, and xi is the
vector containing coefficients on the function space.

The dimensions in function space that are optimal for
approximating a delay are shifted Legendre polynomials: P:

Pi rÞð = ð−1Þi
Xi

j=0

�
i
j

��
i + j
j

�
ð−rÞj: (A2)

These Legendre polynomials can be interpreted as temporal
basis functions that represent a rolling window of the last θ seconds
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(Appendices continue)

A1 For a complete derivation, which is based on taking the Padé
approximation of the Laplace transform of a pure delay (u(t − θ)) and
discussion of Legendre Memory, see Voelker (2019).
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of input history, similarly to how sines and cosines can form a basis
for signals in the frequency domain. We can then approximate
input history by taking a linear combination (i.e., weighted sum) of
the temporal basis functions. The coefficients on each polynomial

(i.e., the weights, x) are generated so that their sum is an
approximation of input history (see Figure 2). The formal
dynamical system that generates x on the fly is described in the
main text.

Figure A1
Delaying a Continuous-Time Input by 2 s

Note. This figure illustrates the challenge of delaying an input. The top panel shows a continuous-time signal that is delayed for
2 s, as shown in the bottom panel. While individual dots and lines represent how inputs are delayed, this is only done for clarity:
The input is continuous in time; therefore, an infinite number of dots and lines would need to be displayed. See the online article
for the color version of this figure.

Figure A2
Delaying an Input for 2 s Using Infinite Memory Capacity

Note. One way to solve the delay challenge is to store each input for exactly 2 s. However, if this solution is applied for
continuous-time signals, we would need to store an infinite number of inputs, regardless of the length of the delay. See the online
article for the color version of this figure.

(Appendices continue)
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Appendix B

Neural Engineering Framework

This algorithm can be implemented in the Neural Engineering
Framework (NEF; Eliasmith & Anderson, 2003), as implemented
in the python library Nengo (Bekolay, Bergstra, et al., 2014). The
NEF uses three general principles to implement computations in
neural networks: representation, transformation, and dynamics (for
detailed discussions of these principles, see Eliasmith & Anderson,
2003; Stewart & Eliasmith, 2014; Stöckel & Eliasmith, 2021;
Voelker & Eliasmith, 2018). The NEF has been used to build
models of working memory (Duggins et al., 2017; Gosmann &
Eliasmith, 2021; Singh & Eliasmith, 2006), long-term memory
(Gosmann & Eliasmith, 2021), attention (Bobier et al., 2014),
action selection (Stewart et al., 2012) and reinforcement learning
(Rasmussen et al., 2017), and a large-scale cognitive architecture,
the Semantic Pointer Architecture Unified Network (Eliasmith et
al., 2012). Notably, the NEF has also been used to construct models
that are able to track time (Bekolay, Laubach, et al., 2014; Singh &
Eliasmith, 2006; Stöckel et al., 2021). For instance, Bekolay,
Laubach, et al. (2014) constructed a “double integrator” network
that was able to track elapsed time, which optimized task
performance in a simple reaction time experiment. Stöckel et al.
(2021) have used the NEF to construct a biologically detailed
model of the cerebellar circuits underlying eyeblink conditioning,
using the LDN. Here, we briefly review the methods of the NEF
focusing on those aspects that are relevant to the UTC model.

Principle 1: Representation

The NEF assumes that the representation of a variable can be
described in terms of its encoding and decoding. The encoding
process describes how an input x is captured by the system. In our
case, the input is captured by spiking neural activity. For decoding,
the system needs to explain how, given the neural activity a that is
encoding x, a downstream neuron can have access to the value of x.
Together, encoding and decoding define the representation of the
variable.
Our algorithm has several variables that we would like to represent

with the activity of spiking neurons. For instance, the coefficients x(t)
are explicitly represented and updated by the algorithm. Principle 1 in
the NEF, Representation, provides methods for capturing such
representations. Specifically, if we want to represent a vector x with
neurons, the activity of the neurons a should reflect changes in x over
time. We can describe this relationship as follows:

aiðxÞ = Gi½JiðxÞ�, (B1)

whereGi[.] is a nonlinear function that generates neural spikes and Ji
is the input current to the neuron’s soma. NEF allows for explaining
how such abstractions map to biological processes, like somatic
currents, neural spiking, tuning curves, and synaptic transmission.
To begin, we will discuss how neurons encode information into

spike trains. Representing x requires that the neurons should be
sensitive to changes in x. This is implemented by assuming that each
neuron i is associated with a preferred input, represented by a
randomly chosen unit-length encoder ei. The more similar x is to ei,
the higher the input current (Ji) received by neuron i and, thus, the

higher its firing rate. The unit-length encoders can be chosen to
match recorded neuron tuning curves, but for this model, we use the
default method of choosing these randomly.

The current Ji is determined by a randomly chosen gain αi, which
determines the slope of the response function, and bias βi, which
determines the intercept of the response function (Figure B1). As for
the encoders, these could be set to match known neuron tuning in
future work. The full equation for the current driving the neural
nonlinearity is thus:

JiðxÞ = αihx, eii + βi, (B2)

where 〈.〉 is the dot product (Figure B2).
As shown in Figure B3, these equations and random choices of

neuron parameters serve to capture the known heterogeneity of
neural systems. Distributing parameters in this manner makes it
feasible to test possible neuron responses in specific applications.
For instance, we will show later that assuming heterogeneous tuning
curves captures the observed heterogeneity of firing patterns in
timing experiments (see section the Changes in Window Size
Explain Temporal Scaling in Complex Neural Patterns section).

In all simulations reported in this article, we use the leaky
integrate-and-fire (LIF) neuron model (but the NEF extends to more
complex neuron models, see Duggins et al., 2017). In the LIF
neuron, each time the membrane voltage V crosses some threshold
Vthresh, the neuron generates a spike and resets to its resting state for
the duration of the refractory period τref . We can represent the
spiking activity of a neuron as a series of δ functions, where each δ
function is located at a spike time (Figure B3) tm, giving the train of
spikes as:

ai =
X
m

δðt − tmÞ: (B3)

Given the neural activity a that is encoding x, downstream
neurons should be able to infer the value of x. The process of the
downstream neuron extracting that information is called decoding.
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Figure B1
Gain (α) and Bias (β) Determine the Slope and Intercept of Neural
Tuning Curves

Note. The input scalar x is plotted on the x-axis, and the firing rate (in Hz) is
plotted on the y-axis.

(Appendices continue)

824 DE JONG ET AL.



However, downstream neurons do not have direct access to spiking
activity of upstream neurons. Notably, as spikes arrive at the end of
the sending neuron’s axon, they result in neurotransmitters being
released across the synaptic cleft, which induces a postsynaptic
current (PSC) on the dendrites of the receiving neuron. We model
this PSC as a simple exponentially decaying current:

hðtÞ = e−t=τPSC , (B4)

where τPSC is the time constant of the PSC’s decay. Biologically,
τPSC depends on how long the ion channels (of the postsynaptic
neuron) opened by the neurotransmitter remain in their open state.
For instance, τPSC is around 5 ms for α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid, 10 ms for γ-aminobutyric acid, and
100 ms for N-methyl-d-aspartate receptors. Given some spike train
that encodes x, we can characterize the raw, unweighted current that
could be injected into a cell as:

ai =
X
m

hðt − tmÞ: (B5)

This equation can be thought of as applying the PSCmodel to each
spike as it arrives and summing up the result (Figure B3). Notably,
this filtered input does not map to observable currents but is instead a
useful theoretical construct that captures temporal decoding. In other
words, it describes what kind of temporal variability is evident in the
incoming spike train from one presynaptic cell.
Where the above describes the input of a single cell, x is obviously

encoded by a population of cells. Decoding of a representation that
may be distributed over a population of neurons requires “spatial”
decoding. Because different neurons may encode different parts of
the x space, considering all of them is essential for fully decoding the

information in the encoding population. Specifically, the NEF
suggests how to solve for a set of optimal spatial decoders d, using
regularized least-squares optimization, while taking into account
some level of noise. Combining the spatial and temporal decoding
that optimally decodes out an estimate of our original vector x gives
the estimate x̂, that is:

x̂ =
XN,M
i,m

hðt − timÞdi, (B6)

where N is the number of neurons in the encoding population, M is
the number of spikes, i indexes the neurons, m indexes the spikes,
h(t) is the PSC of the receiving neuron, x̂ is an estimate of our
original input vector x, and di is a decoder for neuron i to optimally
represent x (Figure B3).

As shown in Figure B3, we have fully mapped the process of
encoding and decoding an input variable x to neurobiological
processes, thus, specifying an implementation method for the
representations in our algorithm.

Principle 2: Transformation

Principle 2 of the NEF, Transformation, describes how to
implement linear and nonlinear computations with the represented
variables. That is, it specifies how a neurobiological system can
transform some representation of x to some function of x, f(x).
Usefully, Principle 1, Representation, is a special case of Principle
2, Transformation: When we represented a vector x, we defined the
loss function of our regularized least-squared problem as the
difference between x and our estimate x̂. However, we can think of
transforming x, as decoding out a certain function of x, f(x) from
our neural activity. Hence, the loss function of our regularized
least-squares problem becomes the difference between fðx̂Þ and
f(x). The resulting decoders df will compute the function f(x)
(Figure B3).

The above describes a general method for computing arbitrary
functions of the variables represented using Principle 1, without
introducing new neurobiological mappings. That is, the connection
weights between neurons in subsequent populations combine the
encoding and decoding/transformations of the NEF. Hence,
connection weights can be analytically derived given the desired
function f(x), without assuming that encoders and decoders have
some neurobiological analogue.

Principle 3: Dynamics

To this point, we have described how to characterize the
transformations and representations in our algorithm. However, we
have not yet described how to implement the core linear dynamical
system (Equation 1). Principle 3 of the NEF exploits Principles 1
and 2 to implement arbitrary dynamical systems (of which our
network, see Equation 1, is an instance) in spiking neurons:

ẋðtÞ = AxðtÞ + BuðtÞ: (B7)

Principle 3, Dynamics, tells us how to implement a dynamical
system of this form in a recurrent spiking neural network. Under
mild assumptions, the dynamics of the spiking recurrent neural
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Figure B2
Tuning Curves for Individual Neurons in a Population

Note. Heterogeneity in encoders (sensitivity to direction of x, i.e., positive
or negative values), intercepts (values when the neuron starts firing), and
gains (slope of tuning curves) allow for efficient representation of x. For
instance, the orange neuron is sensitive to negative values whereas the blue
neuron starts firing more when positive values are represented. The orange
neuron has a steeper slope (i.e., a higher gain) and also a different intercept
(i.e., different bias). See the online article for the color version of this figure.
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network are dominated by the PSC (hðtÞ = e−t=τPSC ). In other words,
we can treat the PSC as the dynamical primitive of our dynamical
system (Eliasmith & Anderson, 2003). To get the dynamics defined
in Equation 1, we need to map the equation with the dynamical
primitive of integration (Equation 1) to an equivalent equation with
a dynamical primitive of the PSC. Or, more intuitively speaking, we
need to take into account the fact that information decays over time
because of the PSC while it is perfectly remembered by integration.
To illustrate, when a spike would arrive at some process that
integrates perfectly, no information would be forgotten. But when
that same spike arrives at a postsynaptic neuron, the information that
this spike carries is lost over time because of the PSC (see Figure
B3). Therefore, we have to figure out how strongly we should
“remind” the state vector of its previous state to precisely counteract
this PSC forgetting. To do this, we should adjust the dynamics
matrix A and input matrix B. For linear systems, this adjustment is

proposed by the NEF as follows (for a full derivation, see Eliasmith
& Anderson, 2003):

A′= τA + I, (B8)

B′= τB, (B9)

where A′ is our neural recurrent transformation and B′ is our neural
input transformation.

For our specific network, we want to be able to control θ on the fly
as well, to encode intervals that vary widely in timescale. If we solve
for ẋ in Equation 1, we see thatA and B should be multiplied by θ−1.
That is, the recurrent gain on A and B is inversely proportional to θ
(Voelker, 2019). For instance, if we want θ to be 2 s, we should
multiply the recurrent gain we already have (τ) with a multiplication
factor (θ−1 = 0.5). We introduce a neural population θ−1 that
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Figure B3
Representation and Transformation With the Neural Engineering Framework

d f

Note. We feed an input signal (top row) into a population of spiking neurons. The tuning curves describe how this input drives the
spiking frequency of individual neurons. For instance, the blue neuron is sensitive to positive inputs, and the orange neuron to negative
inputs (second row; also see previous figure). A downstream population of neurons receive postsynaptic potentials for which we use a
lowpass filter (third row). The original signal (black) or a transformation of the original signal (x2; gray curve) can be read out by applying
an optimal set of decoders df. See the online article for the color version of this figure.

(Appendices continue)
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represents this multiplication factor on the recurrent gain. This allows
us to adaptively control the recurrent gain and therefore θ (Figure 4).
This completes our characterization of the implementation of all

elements of our algorithm using the NEF. The resulting model is a

recurrent neural network consisting only of standard LIF spiking
neurons with connection weights between them that are determined
by the A, B, d, and e matrices and a simple exponential
synapse model.

Appendix C

Modeling C. V. Buhusi (2012)

For the fit to C. V. Buhusi (2012), we need to model how
objective sound intensity maps onto the vectors that our neural
populations represent. First, we assumed a power law mapping
between sound intensity (I, in W/m2) to subjective loudness (L;
Stevens, 1956):

L = kIm, (C1)

where k is a free scaling parameter that was fit individually for each
experiment (Experiment 1: k = 2.5; Experiment 2: k = 5), and we
used the estimated exponent m = 0.09 from Pardo-Vazquez et al.
(2019), who modeled sound intensity discrimination in rats using a
power law function. Subsequently, we converted the experimental
values (40 dB–100 dB) on this subjective loudness scale to spatial
semantic pointers (Komer et al., 2019). These vectors can represent
continuous values by exponentiating a vector with a real value (in
our case, subjective loudness):

SSP = xL, (C2)

where SSP is a spatial semantic pointer and x is a unitary vector
(which does not change length when circular convolution is
applied). Vectors are exponentiated by first taking their Fourier
transformFf·g then doing an element-wise exponentiation on those
complex numbers and then doing the inverse Fourier transform:

xL = F−1fFfxgLg: (C3)

These vectors, in turn, exhibit is a smooth function of subjective
similarity with respect to physical similarity (Komer et al., 2019).
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